

1 EU-TYPE EXAMINATION CERTIFICATE

2 Equipment intended for use in Potentially Explosive Atmospheres Directive 2014/34/EU

3 Certificate Number: Sira 16ATEX2219X Issue: 7

4 Equipment: Proline Promass 300/500, Proline Cubemass 300/500 and

Proline Promag 300/500

5 Applicant: Endress+Hauser Flowtec AG

6 Address: Endress+Hauser Flowtec AG Kaegenstrasse 7, CH-4153, Reinach BL, Switzerland

Endress+Hauser Flowtec AG, Cernay, France

Endress+Hauser Flowtec (India) Pvt. Ltd. Waluj, India Endress+Hauser Flowtec AG Div. U.S.A. Greenwood, USA Endress+Hauser Flowtec (China) Co. Ltd. Suzhou, P.R. China

Endress + Hauser Flowtec (Brazil) Fluxômetros Ltda., Estrada Muncipal Antônio Sesti,

600 A - Recreio Costa Verde - Itatiba / SP, CEP 13254 - 085 - Brazil

Endress+Hauser Flowtec (China) Co. Ltd.,

Site 1: China- Singapore Suzhou Industrial Park (SIP), Su-Hong-Zhong-Lu No. 465 Site 2: Suzhou Industrial Park (SIP), Jiang-Tian-Li-Lu No. 31, 215021 Suzhou, P.R. China

- 7 This equipment and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.
- 8 CSA Group Netherlands B.V., notified body number 2813 in accordance with Articles 17 and 21 of Directive 2014/34/EU of the European Parliament and of the Council, dated 26 February 2014, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment intended for use in potentially explosive atmospheres given in Annex II to the Directive.

The examination and test results are recorded in the confidential reports listed in Section 14.2.

9 Compliance with the Essential Health and Safety Requirements, with the exception of those listed in the schedule to this certificate, has been assured by compliance with the following documents:

EN IEC 60079-0:2018 EN 60079-1:2014 EN 60079-11:2012 EN 60079-26:2015 EN 60079-31:2014 EN 60079-7:2015

- If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to Specific Conditions of Use identified in the schedule to this certificate.
- This EU-Type Examination Certificate relates only to the design and construction of the specified equipment. If applicable, further requirements of this Directive apply to the manufacture and supply of this equipment.
- 12 The marking of the equipment shall be as defined in the Certificate Annexe.

Project Number 80036352 Signed: J A May

Title: Director of Operations

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310, 6812 AR, Arnhem, Netherlands

Page 1 of 6

DQD 544.09 Rev 2018-04-20

EU-TYPE EXAMINATION CERTIFICATE

Sira 16ATEX2219X Issue 7

13 DESCRIPTION OF EQUIPMENT

The Proline 300 / 500 is a platform used for flowmeters of type Proline Promag 300, Proline Promag 500, Proline Promass 300, Proline Promass 500, Proline Cubemass 500, Proline Prosonic Flow G 300, Proline Prosonic Flow G 500, Proline Prosonic Flow P 500, Proline t-mass 500 and Proline t-mass 500.

All flowmeters are available in two versions, a compact version (Proline 300) and a remote version (Proline 500). The remote Proline 500 version is also available as a version with ISEM integrated in transmitter where the sensor sends analog signals to the transmitter and a version with ISEM integrated in sensor where the sensor is connected by a digital circuit to the transmitter with additional electronics located at the sensor for assessment of the sensor signals. Proline Prosonic Flow G 500 and Proline t-mass 500 are not available as a version with ISEM integrated in transmitter.

For all versions of the Proline 300, an additional remote Display, e.g. DKX001 or ODKX001, may be connected to the electronics. The remote display is available in two options for the user. Either it is ordered as a separate product or by the product of the flowmeter.

Different electronics are used for the flowmeters where the sensor is installed in a Zone 1 location and where the transmitter can be installed in a safe area or Zone 1 or 2 locations. All versions of electronics are designed either with intrinsically safe IO's (Ex "ia" for Zone 1) or with non-intrinsically safe IO's. A mix of type of protections, Ex "i" in combination with non-Ex "i" IO's is not allowed.

All Proline Promag 300/500, Proline Promass 300/500, Proline Prosonic Flow G 300/500 and Proline t-mass 300/500 flowmeters are available for an ambient temperature of -40° C to $+60^{\circ}$ C and optional -50° C to $+60^{\circ}$ C.

In addition, the version of the sensor of Proline Promass F/X/Q 500 with ISEM electronic in transmitter is available also for -60°C to +60°C ambient. Proline Prosonic Flow P 500 sensors are available for an ambient temperature of -20/-40/-50°C to +80°C and Proline Prosonic Flow P 500 transmitters are available for an ambient temperature of -40°C to +60°C and optional -50°C to +60°C.

An antenna bushing at cable entry for transmitter enclosures in type of protection Ex "eb", and Ex "tb" is available for connection of an external antenna.

Variation 1 - This variation introduced the following changes:

- i. Minor changes to product order codes of Promag W500.
- ii. Minor corrections to product markings.
- iii. Introduction of remote display as part of the flowmeter.
- iv. Minor corrections to the product drawings

Variation 2 - This variation introduced the following changes:

- The addition of model code for replacement transmitter OEM version and new assignment table of replacement transmitter to product of flowmeter.
- ii. The addition of a new, certified sensor" Promass A" sensor with changes to model code.
- iii. Update in the ambient temperature reduced optionally to -60°C for sensors of Promass F/Q/X 500 with code for integrated ISEM electronic k = "B" as described in the technical description document
- iv. All the corresponding drawings were updated to recognise minor administrative amendments.
- v. The introduction of the Proline Promass 300/500 and Proline Cubemass 300/500 flowmeters. These devices were previously covered by certificate Sira 16ATEX2177X using EN 60079-26:2015 as an

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310, 6812 AR, Arnhem Netherlands

DQD 544.09 Rev 2018-04-20 Page 2 of 6

EU-TYPE EXAMINATION CERTIFICATE

Sira 16ATEX2219X

Issue 7

assessment standard; therefore, this document needs to be recognised in the list of supporting documents. (Note: As a result of this change, Sira 16ATEX2177X is no longer required and will therefore be suspended.)

 Previously, EN 60079-15 was specified as a supporting document, this was an error and therefore this standard was removed.

Variation 3 – This variation introduced the following changes:

- The recognition of minor drawings amendments, none of which affect compliance with the applicable standards.
- ii. Minor correction of ATEX marking nameplate to separate the ATEX markings from IECEx.

Variation 4 – This variation introduced the following changes:

- Introduction of new model version Proline Prosonic Flow G 300/500
- ii. Introduction of new model version Proline t-mass 300/500
- iii. Introduction of new Antenna bushing model H337 for external antenna connection with the Proline 300/500 transmitter
- iv. Addition of new order codes for IO1 current output (active) with I/O code dd = "CC" and "CD"
- v. Addition of new order codes for IO2, IO3 and IO4 with I/O code "K" for pulse output Ex i (passive) and with I/O code "L" for pulse output non Ex i
- vi. Addition of new product order codes to include for Promag W300 and Promag W500
- vii. Revised standard IEC 60079-0, Edition 6 to IEC60079-0, Edition 7.0
- viii. The recognition of drawings amendments, none of which affect compliance with the applicable standards

Variation 5 – This variation introduced the following changes:

- i. Addition of product order code "ww = A2" for model Proline Promag 300/500, Proline Prosonic 300/500 and Proline t-mass 300/500. See Certificate Annexe for order code details
- ii. Correction of entity parameter for IO1 order codes: CA, CB (Ci= 0, changed to Ci =6nF) in the applicable drawings
- iii. The recognition of drawings amendments, none of which affect compliance with the applicable standards.

Variation 6 – This variation introduced the following changes:

- i. Changes in nomenclature ("Digital" is now referred as ISEM integrated in sensor, "Analog" is now referred to as ISEM integrated in transmitter)
- ii. Introduction of new flange sizes for Proline Promass 300/500 for High Temperature (HT) flowmeters.
- iii. Update of related product documentation
- iv. Following appropriate assessment to demonstrate compliance with the latest technical knowledge, EN 60079-0:2012/A11:2013 was replaced by EN IEC 60079-0:2018.
- v. The description was amended to reflect the above changes
- vi. Addition of two manufacturing locations in China as shown on TÜV QAN, TÜV 98 ATEX 1348Q

14 DESCRIPTIVE DOCUMENTS

14.1 Drawings

- Issue 0: See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/00 for a full list of drawings covered by this issue.
- Issue 1: See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/01 for a full list of drawings covered by this issue.

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310, 6812 AR, Arnhem Netherlands

DQD 544.09 Rev 2018-04-20 Page 3 of 6

EU-TYPE EXAMINATION CERTIFICATE

Sira 16ATEX2219X

Issue 7

- Issue 2: See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/02 for a full list of drawings covered by this issue. These drawings were rationalised and supersede those detailed in Issues 0 and 1
- **Issue 3:** See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/03 for a full list of drawings covered by this issue. These drawings were rationalised and supersede those detailed in Issue 2 and earlier.
- **Issue 4:** See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/04 for a full list of drawings covered by this issue. These drawings were rationalised and supersede those detailed in Issue 3 and earlier.
- **Issue 5:** See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/05 for a full list of drawings covered by this issue. These drawings were rationalised and supersede those detailed in Issue 4 and earlier.
- Issue 6: No new drawings were introduced
- **Issue 7**: See Cover Sheet of IECEx Test Report CA/CSA/ExTR16.0031/06 for a full list of drawings covered by this issue. These drawings were rationalised and supersede those detailed in Issue 5 and earlier.

14.2 Associated Sira Reports and Certificate History

Issue	Date	Report no.	Comment
0	19 July 2016	R70084415A	The release of the prime certificate.
1	23 February 2017	R70110427A	The introduction of Variation 1.
2	26 September 2017	R70140398A	The introduction of Variation 2.
3	12 January 2018	R70162908A	The introduction of Variation 3.
4	25 March 2019	R70214610A	The introduction of Variation 4.
5	23 August 2019	R80012315A	The introduction of Variation 5
6	15 October 2019	0626	Transfer of certificate Sira 16ATEX2219X from Sira
			Certification Service to CSA Group Netherlands B.V.
7	11 August 2020	R80036352A	The introduction of Variation 6.

- 15 SPECIFIC CONDITIONS OF USE (denoted by X after the certificate number)
- 15.1 All equipment of the measurement system shall be included in the equipotential bonding. Along the intrinsically safe circuits potential equalization must exist.
- 15.2 The sensors may only be used for those process media, for which the wetted parts are known to be suitable
- 15.3 Plastic transmitter enclosures for the order codes listed below shall be installed in an area of at least pollution degree 2.

```
Proline Promass 8*5***-(BI/BJ)*******A....,
Proline Promass O8*5***-(BI/BJ)*******A....,
Proline Promass 8X5* XX -(BI/BJ) ******A....,
Proline Promass O8X5* XX -(BI/BJ) *******A....,
Proline Promag 5*5***-(BJ)*******A....,
Proline Promag O5*5***-(BJ)*******A....,
Proline Promag 5X5* XX -(BJ) *******A....,
Proline Promag O5X5* XX -(BJ) *******A....,
Proline Prosonic Flow G 9*5***-(BJ)...,
Proline Prosonic Flow G O9*5***-(BJ)...,
Proline Prosonic Flow G O9X5*XX-(BJ)...,
Proline Prosonic Flow G O9X5*XX-(BJ)...,
```

This certificate and its schedules may only be reproduced in its entirety and without change

EU-TYPE EXAMINATION CERTIFICATE

Sira 16ATEX2219X Issue 7

Proline t-mass 6*5***-(BJ)..., Proline t-mass O6*5***-(BJ)..., Proline t-mass 6X5*XX-(BJ)..., Proline t-mass O6X5*XX-(BJ)...

Equipment with the following order codes for Proline Promass shall be installed using a transient protection not exceeding 140% of the peak rated voltage value at the supply terminals to the equipment.

For order code 'dd' = BM, BN

15.5 If the flowmeter system is connected to remote display type DKX001, the approval codes 'dd' for the flowmeter shall be paired to the approval code "bb" of the remote display as follows:

Approval code 'dd' of Proline Promass 300	Approval code 'bb' of remote display DKX001/ODKX001 as covered by DEKRA15ATEX0044
BA, BB, BC or BD	BE, BF or BG

15.6 Equipment with the following order codes for Proline Promag, Proline Prosonic Flow G and Proline t-mass shall be installed using a transient protection not exceeding 140% of the peak rated voltage value at the supply terminals to the equipment.

For order code 'dd' = BN

- 15.7 For remote versions of Promag flowmeters with a flat gasket within the sensor terminal box, the user shall ensure that flat cover seals are not bent into the seal surface before securing the cover. Seals that are not flat shall be replaced.
- 15.8 If the flowmeter system is connected to remote display type DKX001, the approval codes 'dd' for the flowmeter shall be paired to the approval code "bb" of the remote display as follows:

Proline Prosonic Flow G 300 and Proline t-	Approval code 'bb' of remote display DKX001/ODKX001 as covered by DEKRA15ATEX0044
mass 300	
BB, BD, B7 or B8	BE, BF or BG

- 15.9 For remote versions of Promag flowmeters with a flat gasket within the sensor terminal box, the user shall ensure that flat cover seals are not bent into the seal surface before securing the cover. Seals that are not flat shall be replaced.
- 15.10 The equipment has non-conductive surfaces which are a potential electrostatic charging hazard see instructions for guidance.

Applicable to Antenna bushing H337 when used with Proline 300/500 transmitter enclosure:

- 15.11 Antenna supplied by Endress+Hauser shall be used only. As an alternate, any passive omni-directional RF antenna with or without cable is permitted to be connected when meeting the following parameters:
 - a) The antenna connected to the antenna bushing shall have an impedance of at least 50Ω
 - b) The rated frequency range of the antenna shall not exceed 1710MHz ... 6000MHz
 - c) The rated power of the antenna shall be at least 100mW

This certificate and its schedules may only be reproduced in its entirety and without change

EU-TYPE EXAMINATION CERTIFICATE

Sira 16ATEX2219X

Issue 7

- 15.12 The antenna bushing type H337 shall be mounted wrench tight to the transmitter enclosure to maintain the ingress protection of the enclosure
- 15.13 The RF antenna or the RF antenna cable shall be fitted with a Series N (MIL-STD-348) plug connector. The coupling nut of the Series N plug connector shall be hand tightened only
- 15.14 The metal enclosure of the Antenna Bushing H337 shall be securely connected to local earth, typically via the enclosure to which it is connected
- 16 ESSENTIAL HEALTH AND SAFETY REQUIREMENTS OF ANNEX II (EHSRs)

The relevant EHSRs that are not addressed by the standards listed in this certificate have been identified and individually assessed in the reports listed in Section 14.2.

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

1 Proline Promass 300/500, Proline Cubemass 300/500

1.1 Marking

Proline Promass 500 analog, Proline Cubemass 500 with ISEM integrated in transmitter							
i. Model Code: 8*5*** – dd*ff****B************ – dd*ff****B*****************************							
dd = approval	ff = I/O	Device	ATEX marking	Marking of Ex protection			
BA	CA, CB, CC, CD,	Transmitter	[©] H2(1)G	Ex db eb ia [ia Ga] IIB T6T5 Gb			
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db			
	GA, LA, NA, RA,	Sensor		Ex ia IIB T6T1 Ga/Gb 1)			
	SA, MA			Ex ia IIB T6T1 Gb			
				Ex ia tb IIIC T** °C Db			
BB	CA, CB, CC, CD,	Transmitter		Ex db eb ia [ia Ga] IIC T6 T5 Gb			
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db			
	GA, LA, NA, RA,	Sensor		Ex ia IIC T6T1 Ga/Gb 1)			
	SA, MA			Ex ia IIC T6T1 Gb			
				Ex ia tb IIIC T** °C Db			
BC	CA, CB, CC, CD,	Transmitter		Ex db ia [ia Ga] IIB T6 T5 Gb			
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db			
	GA, LA, NA, RA,	Sensor		Ex ia IIB T6T1 Ga/Gb 1)			
	SA, MA			Ex ia IIB T6T1 Gb			
				Ex ia tb IIIC T** °C Db			
BD	CA, CB, CC, CD,	Transmitter	[©] II2(1)G	Ex db ia [ia Ga] IIC T6 T5 Gb			
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db			
	GA, LA, NA, RA,	Sensor		Ex ia IIC T6T1 Ga/Gb 1)			
	SA, MA			Ex ia IIC T6T1 Gb			
				Ex ia tb IIIC T** °C Db			

1) The following sensors are marked for EPL Gb: Promass A DN1, Promass H DN8...50, Promass I DN 8...80

Proline Promass 500 analog, Proline Cubemass 500 analog						
Model Code: 8*	5*** - dd*ff****B	*****	*+#**# O8*5	*** - dd*ff****B************		
dd = approval	ff = I/O	Device	ATEX marking	Marking of Ex protection transmitter		
BA	CA, CB, CC, CD,	Transmitter		Ex db eb ia [ia Ga] IIB T6T5 Gb		
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db		
	GA, LA, NA, RA,	Sensor		Ex ia IIB T6T1 Ga/Gb 1)		
	SA, MA			Ex ia IIB T6T1 Gb		
				Ex ia tb IIIC T** °C Db		
BB	CA, CB, CC, CD,	Transmitter		Ex db eb ia [ia Ga] IIC T6 T5 Gb		
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db		
	GA, LA, NA, RA,	Sensor		Ex ia IIC T6T1 Ga/Gb 1)		
	SA, MA			Ex ia IIC T6T1 Gb		
				Ex ia tb IIIC T** °C Db		
BC	CA, CB, CC, CD,	Transmitter	[©] H2(1)G	Ex db ia [ia Ga] IIB T6 T5 Gb		
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db		

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Promass 500 analog, Proline Cubemass 500 analog					
Model Code: 8*	5*** - dd*ff****B	*****	*+#**# O8*5	*** - dd*ff****B************	
	GA, LA, NA, RA,	Sensor		Ex ia IIB T6T1 Ga/Gb 1)	
	SA, MA			Ex ia IIB T6T1 Gb	
				Ex ia tb IIIC T** °C Db	
BD	CA, CB, CC, CD,	Transmitter	[©] II2(1)G	Ex db ia [ia Ga] IIC T6 T5 Gb	
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db	
	GA, LA, NA, RA,	Sensor		Ex ia IIC T6T1 Ga/Gb 1)	
	SA, MA			Ex ia IIC T6T1 Gb	
				Ex ia tb IIIC T** °C Db	

¹⁾ The following sensors are marked for EPL Gb: Promass A DN1, Promass H DN8...50, Promass I DN 8...80

Proline Promas	s 500 digital, Prolin	e Cubemass 5	00 with ISEM in		
Model Code: 8*5*** – dd*ff****A*********+#**# 08*5*** – dd*ff****A***********+#**#					
dd = Approval	ff = I/O	Device	ATEX marking	Marking of Ex protection transmitter	
BI	BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	© II(1)G © II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	© II1/2G © II2G © II2D	Ex ia IIB T6T1 Ga/Gb ¹⁾ Ex ia IIB T6T1 Gb Ex ia tb IIIC T** °C Db	
ВЈ	BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	© II(1)G © II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	© II1/2G © II2G © II2D	Ex ia IIC T6T1 Ga/Gb ¹⁾ Ex ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db	
BM	HA, TA, CA, CB, CC, CD	Transmitter	⑤ II(1)G⑥ II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	© II1/2G © II2G © II2D	Ex ia IIB T6T1 Ga/Gb ¹⁾ Ex ia IIB T6T1 Gb Ex ia tb IIIC T** °C Db	
	BA, BB, GA, NA, RA, SA. MA	Transmitter	© II(1)G © II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	© II1/2G © II2G © II2D	Ex ia IIB T6T1 Ga/Gb ¹⁾ Ex ia IIB T6T1 Gb Ex ia tb IIIC T** °C Db	
BN	HA, TA, CA, CB, CC, CD	Transmitter	 II(1)G II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	 II1/2G II2G II2D	Ex ia IIC T6T1 Ga/Gb ¹⁾ Ex ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db	
	BA, BB, GA, NA, RA, SA. MA	Transmitter	© II(1)G © II(1)D	[Ex ia] IIC [Ex ia] IIIC	
		Sensor	© II1/2G © II2G © II2D	Ex ia IIC T6T1 Ga/Gb ¹⁾ Ex ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db	

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

1) The following sensors are marked for EPL Gb: Promass A DN1, Promass H DN8...50, Promass I DN 8...80

1.2 Order Code

Extended order code Proline Promass 300 and Cubemass 300:

8a3bcc - ddeffghjlpsstttvww + #**#

O8a3bcc – ddeffghjlpssttvwwyy + #**# for OEM-version

8x3bxx – ddeffghjlprrssww + #**# for replacement transmitter
08x3bxx – ddeffghjlprrsswwyy + #**# for replacement transmitter OEM

Extended order code Proline Promass 500 and Cubemass 500:

8a5bcc - ddeffghijkmnopsstttvww + #**#

O8a5bcc – ddeffghijkmnopsstttvwwyy + #**# for OEM-version 8x5bxx – ddeffghijkmopggrrssww + #**# for replacement transmitter

O8x5bxx – ddeffghijkmopqqrrsswwyy + #**# for replacement transmitter OEM

a = Type of sensor

A = Promass A; C = Cubemass C; E = Promass E; F = Promass F; H = Promass H; I = Promass I; O = Promass O; P = Promass P; Q = Promass Q; S = Promass S;

X = Promass X

b = Generation

B = Promass A (type 8A*B**, O8A*B**); Cubemass C; Promass E;

Promass F; Promass H; Promass I; Promass O; Promass P; Promass Q; Promass S; Promass X

C = Promass A (type 8A*C**, O8A*C**)

cc = Size

any double digits with combination of number or letter

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

> 300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Endress+Hauser Flowtec AG Applicant:

dd **Approval**

Proline Promass 300:

BA =Ex db eb [ia] IIB T6...T1 Gb

Ex tb IIIC T** Db

BB =Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

BC = Ex db [ia] IIB T6...T1 Gb

Ex tb IIIC T** Db

BD =Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

Proline Promass 500:

BA = Ex db eb [ia] IIB T6...T4 Gb Ex ia IIB T6...T1 Gb

Ex tb IIIC T** Db

BB =Ex db eb [ia] IIC T6...T4 Gb

Ex ia IIC T6...T1 Gb (sensor) Ex tb IIIC T** Db

(transmitter) BC = Ex db [ia] IIB T6...T4 Gb

Ex ia IIB T6...T1 Gb (sensor)

Ex tb IIIC T** Db

BD =Ex db [ia] IIC T6...T4 Gb Ex ia IIC T6...T1 Gb (sensor)

Ex tb IIIC T** Db (transmitter + sensor)

BI =[Ex ia] IIC

Ex ia IIB T6...T1 Gb Ex tb IIIC T** Db

BJ = [Ex ia] IIC

Ex ia IIC T6...T1 Gb Ex tb IIIC T** Db

BM = [Ex ia] IIC

Ex ia IIB T6...T1 Gb Ex tb IIIC T** Db

BN = [Ex ia] IIC

Ex ia IIC T6...T1 Gb

Ex tb IIIC T** Db

Power Supply

D = 24Vdc E = 100-230Vac

1 100-230Vac / 24Vdc

X = sensor only (transmitter) (sensor)

(transmitter + sensor)

(transmitter)

(transmitter + sensor)

(transmitter + sensor)

(transmitter)

(transmitter) (sensor) (sensor) (transmitter) (sensor) (sensor)

(transmitter) (sensor) (sensor) (transmitter)

(sensor) (sensor)

This certificate and its schedules may only be reproduced in its entirety and without change

g

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

ff = Input / Output 1

BA = 4-20mA HART BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive)
CB = 4-20mA WHART Ex i (passive)
CC = 4-20mA HART Ex i (active)
CD = 4-20mA WHART Ex i (active)

GA = Profibus PA HA = Profibus PA Ex i LA = Profibus DP NA = EtherNet/IP RA = Profinet IO

SA = Foundation Fieldbus TA = Foundation Fieldbus Ex i

MA = Modbus RS485 X = sensor only Input / Output 2

A = without Input/Output 2

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input
J = Status input
L = Pulse output Ex i
K = Pulse output
X = sensor only

h = Input / Output 3

A = without Input/Output 3

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input L = Pulse output Ex i K = Pulse output X = sensor only

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310,

6812 AR, Arnhem Netherlands

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

ē		
İ	=	Input / Output 4 (Proline 500 only)
		A = without Input/Output 4
		B = 4-20mA
		C = 4-20mA Ex i (passive)
		D = Configurable IO
		E = Pulse/Frequency/Switch output
		F = Pulse output phase-shifted
		G = Pulse/Frequency/Switch output Ex i
		H = Relay
		I = 4-20mA input
		J = Status input
		L = Pulse output Ex i
		K = Pulse output
		X = sensor only
j	=	Display / Operation
		with remote Display : O
		without remote Display: any single number or letter except O
k	=	Integrated ISEM electronic (Proline 500 only)
		A = Sensor
		B = Transmitter
1	=	Housing (Proline 300 only)
		any single number or letter
m	=	Transmitter Housing (Proline 500 only)
		any single number or letter
n	=	Sensor Housing (Proline 500 only)
		any single number or letter
0	=	Cable Sensor Connection (Proline 500 only)
		any single number or letter
р	=	Cable Entry
		any single number or letter
qq	=	Upgrade Kid
		any double digits with combination of number or letter
rr	=	Existing Product (refer to section 1.3 for assignment table of flowmeter to replacement
		transmitter)
		any double digits with combination of number or letter
SS	=	Measuring tube material
		any double digits with combination of number or letter
ttt	=	Process connection
		any triple digits with combination of number or letter
V	=	Calibration
		any single number or letter
ww	=	Device model (two digit) (refer to section 1.3 for assignment table of flowmeter to
		replacement transmitter)
		A1 = product version 1
		A2 = product version 2
уу	=	Customer version (two digit)
		any double digits with combination of number or letter

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V.

Utrechtseweg 310,

6812 AR, Arnhem Netherlands

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, + = Signs used as indicator for optional abbreviation of extended order code

1.3 Assignment of Flowmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline Promass 300/500 as follows:

Product flowmeters	Replacement transmitter type					
model code	Generation code b =	device model code ww =	model code	Generation code b =	existing product rr =	device model code ww =
8A*b**ww, O8A*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	AA	A1
8C*b**ww, O8C*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	C*	A1
8E*b**ww, O8E*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	E*	A1
8F*b**ww, O8F*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	F*	A1
8H*b**ww, O8H*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	H*	A1
81*b**ww, O81*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	I *	A1
80*b**ww, 080*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	0*	A1
8P*b**ww, O8P*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	P*	A1
8Q*b**ww, 08Q*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	Q*	A1
8S*b**ww, 08S*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	S*	A1
8X*b**ww, O8X*b**ww	В	A1	8x*bxxrrww, 08x*bxxrrww	В	X*	A1
8A*b**ww, O8A*b**ww	С	A1	8x*bxxrrww, 08x*bxxrrww	В	AB	A1

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

1.4 Sensor Groups

In the following tables, the Promass 300/500 sensors are assigned to different sensor groups depending on their sensor size and electronics version.

Assignment of Promass sensors and Cubemass sensors installed in Zone 1:

Sensor Group	Type of sensor	Size of sensor	Group	T _{Med,min}
A1	A (type 8A*B**)	01, 02, 04	IIC	-50°C
	С	01, 02, 04, 06	IIC	-50°C
	E	25, 40, 50	IIC	-50°C
	F	08, 15, 25, 40, 50	IIC	-50°C /-60°C *)
	F(HT)	15, 25, 50	IIC	-50°C
	H, S, P	08, 15, 25, 40	IIC	-50°C
		08, 15, 16, 25, 26, 40	IIC	-50°C
	Q	25, 50	IIC	-50°C /-60°C *)
B1	A (type 8A*C**)	01, 02, 04	IIC	-50°C
	E	08, 15, 80	IIC	-50°C
	F	08, 15	IIC	-50°C /-60°C *)
	F, F(HT), O	80, 100, 150, 250	IIC	-50°C /-60°C *)
	Ī	41, 50, 51, 80	IIC	-50°C
	H, S, P	50	IIC	-50°C
	Q	80, 100	IIC	-50°C /-60°C *)
	Х	350	IIC	-50°C /-60°C *)
C1	F	15, 25, 40, 50	IIC	-200°C
	Н	8, 15, 25, 40, 50	IIC	-200°C
	Q	25, 50	IIC	-200°C
D1	F	08, 15, 80, 100, 150, 250	IIC	-200°C
E1	Н	50	IIC	-200°C
	Q	80, 100	IIC	-200°C
	E	80	IIB	-50°C
	F, F(HT), O	80, 100, 150, 250	IIB	-50°C /-60°C *)
	H, S, P	50	IIB	-50°C
		41, 50, 51, 80	IIB	-50°C
	Q	80, 100	IIB	-50°C /-60°C *)
	Χ	350	IIB	-50°C /-60°C *)
H1	F, F(HT)	80, 100, 150, 250	IIB	-200°C
	Н	50	IIB	-200°C
	Q	80, 100	IIB	-200°C

^{*)} Tmed,min = -60°C only applicable for sensor of Promass F 500, Promass Q 500 and Promass X 500 versions with ISEM integrated in transmitter.

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Note: All sensors of Promass 300 and Promass 500 versions are available for EPL Ga/Gb except the versions "A" (size DN1), "H" (all sizes) and "I" (all sizes) which are only available for EPL Gb. For sensors with EPL Ga, Zone 0, the protection is only applicable for the interior of the measuring tube.

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

1.5 Parameters

1.5.1 Electrical Parameters

Power Supply		
Order Code e =	terminal no.	values
D 1)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC}$ $U_M = 250Vac$
E 1)	No. 1(L+/L), 2(L-/N)	$U_N = 85264V_{AC}$
		$U_{M} = 250 Vac$
 2)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC} / 85264V_{AC}$ $U_M = 250 \text{ V}$

¹⁾ applicable for products with approval code dd = BA, BB, BC, BD

²⁾ applicable for products with approval code dd = BI, BJ, BM, BN

Input/Output 1				
Order Code ff =	terminal no.	values		
BA, BB, MA	No. 26, 27	$U_N = 30V_{DC}$ $U_M = 250Vac$		
LA, GA, SA	No. 26, 27	$U_N = 32V_{DC}$ $U_M =$: 250Vac	
CA, CB	No. 26, 27	$U_i = 30V$ $I_i = 100m_i$	A	
		$P_i = 1.25W L_i = 0$		
		$C_i = 0$		
CC, CD	No. 26, 27	1)	2)	
		$U_0 = 21.8V$	$U_0 = 21.8V$	
		$I_0 = 90mA$	$I_0 = 90mA$	
		$P_0 = 491 \text{mW}$	$P_0 = 491 \text{mW}$	
		$L_0 = 4.1 \text{mH (IIC)} /$	$L_0 = 9mH (IIC) /$	
		15mH (IIB)	39mH (IIB)	
		$C_0 = 160 nF (IIC) /$	$C_0 = 600nF (IIC) /$	
		1160nF (IIB)	4000nF (IIB)	
		Ui = 30V	Ui = 30V	
		li = 10mA	Ii = 10mA	
		Pi = 0.3W	Pi = 0.3W	
		Ci = 6nF	Ci = 6nF	
		Li = 4.1mH	Li = 4.1mH	
HA, TA	No. 26, 27	1)	2)	
		Profibus PA (Fisco	Profibus PA (Fisco	
		Field Device) /	Field Device) /	
		Foundation Fieldbus	Foundation Fieldbus	
		$U_i = 30V$	$U_i = 32V$	
		I _i = 570mA	$I_i = 570 \text{mA}$	
		$P_i = 8.5W$	$P_i = 8.5W$	
		L _i = 10µH	$L_i = 10\mu H$	
NA DA	101 / DI4E	$C_i = 5nF$	$C_i = 5nF$	
NA, RA	IO1 / RJ45	$U_{N} = 30V_{DC}$		
		U _M = 250Vac		

applicable for products with approval code dd = BA, BB, BC, BD

This certificate and its schedules may only be reproduced in its entirety and without change

²⁾ applicable for products with approval code dd = BM, BN

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Input/Output 2		
Order Code g =	terminal no.	values
C, G, K	No. 24, 25	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 24, 25	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 24, 25	$U_N = 30V_{DC}$
		$I_{N} = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

Input/Output 3		
Order Code h =	terminal no.	values
C, G, K	No. 22, 23	$\begin{array}{lll} U_{i} & = 30V \\ I_{i} & = 100mA \\ P_{i} & = 1.25W \\ L_{i} & = 0 \\ C_{i} & = 0 \end{array}$
B, D, E, F, I, J, L	No. 22, 23	$\begin{array}{rcl} U_N &= 30 V_{DC} \\ U_M &= 250 Vac \end{array}$
Н	No. 22, 23	$\begin{array}{lll} U_N &= 30 V_{DC} \\ I_N &= 100 m A_{DC} \ / \ 500 m A_{AC} \\ U_M &= 250 Vac \end{array}$

Input/Output 4		
Order Code i =	terminal no.	values
C, G, K	No. 20, 21	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 20, 21	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 20, 21	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

Service Interface		
Order Code dd =	terminal no.	values
BA, BB, BC, BD	Service Interface	Service Interface shall only be installed in areas which are known to be non hazardous
not for: BA, BB, BC, BD	Service Interface	$U_N = 3.3V$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Antenna bushing Order Code dd =

BA, BB, BI, BJ, BM, BN

Equipment: Proline Promag 300/500, Proline Promass

terminal no.

N connector

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Display remote		
Order Code dd =	terminal no.	values
BA, BB, BC, BD	No. 81, 82, 83, 84	Uo = 3.9V
		Io = 1.5A (spark)
		200mA (power)
		Po = 600mW
		$Ri = 2.6\Omega$
		$Co = 670\mu F$
		Lo = 0
not for:	No. 81, 82, 83, 84	$U_N = 3.3V$
BA, BB, BC, BD		$I_N = 150 \text{mA}$

values

See conditions of safe use

For Transmitter with approval code dd = BA, BB, BC, BD connected to the Remote Display of Endress+Hauser, Type DKX001 or ODKX001, the cable parameter with ration $L/R = \le 0.024$ mH/ Ω applies.

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Promass and Proline Cubemass Remote Transmitter and Remote Sensor:

 8^{*****} -... and 08^{*****} -... with order code dd = BA, BB, BC, BD in combination with k = B:

Transmitter:

Terminals 41, 42 -> exciter coil circuit:

Uo = 15V, Io = 129mA, Po = 484mW

(sensor group A1/C1/E1)

Uo = 15V, Io = 46mA, Po = 173mW

(sensor group B1/D1/H1)

Terminals 9, 10, 11, 12, X3, X4 -> temperature circuit:

Uo = 15V, Io = 18.2mA, Po = 68.3mW

Terminals 4, 5, 6, 7 -> sensor coil circuit:

Uo = 15V, Io = 15.2mA, Po = 57mW

Sensor:

Terminals 41, 42 -> exciter coil circuit:

Ui = 15V, Ii = 132mA, Pi = 494mW

(sensor group A1/C1/E1)

Ui = 15V, Ii = 48mA, Pi = 180mW

(sensor group B1/D1/H1)

Terminals 9, 10, 11, 12, X3, X4 -> temperature circuit:

Ui = 15V, Ii = 60.6mA, Pi = 227.3mW

Terminals 4, 5, 6, 7 -> sensor coil circuit:

Ui = 15V, Ii = 15.2mA, Pi = 57mW

For interconnection using a cable with a maximum length of 120m is allowed when using a cable which has the following parameters:

Cable inductance $\leq 0.5 \text{ mH/km}$ Cable capacitance $\leq 0.5 \text{ µF/km}$

 8^{*****} -... and 08^{*****} -... with order code dd = BI, BJ, BM, BN in combination with k = A:

Transmitter:

terminals 61, 62, 63, 64 -> Uo = 13.8V, Io = 1.156A, Po = 3.3W

Sensor:

terminals 61, 62, 63, 64 \rightarrow Ui = 14V, Ii = 1.2A, Pi = 3.4W

For interconnection of transmitter to sensor any cable may be used with the following requirements:

• L/R \leq 0.0089 mH/ Ω and C_{cable} \leq 760nF for group IIC, L/R \leq 0.0356 mH/ Ω and C_{cable} \leq 4.2 μ F for group IIB

Or

• L_{cable} \leq 26 μ H and C_{cable} \leq 760nF for group IIC, L_{cable} \leq 104 μ H and C_{cable} \leq 4.2 μ F for group IIB

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310, 6812 AR, Arnhem Netherlands

botz AK, Ammeni Nemenan

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

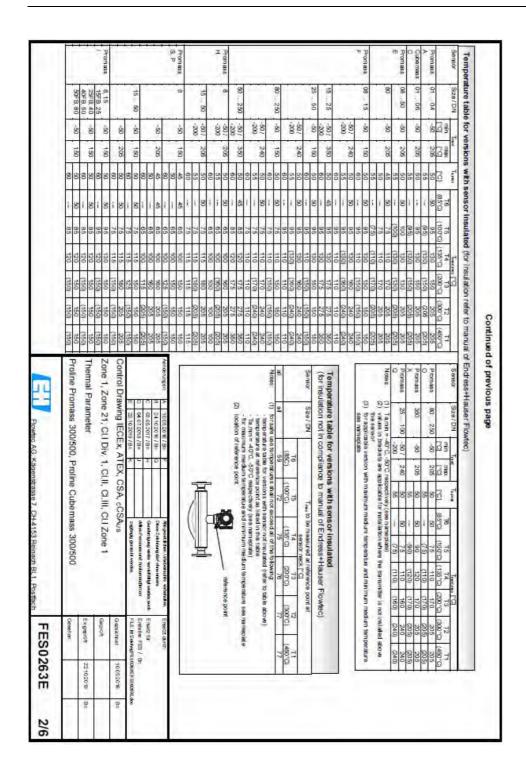
Applicant: Endress+Hauser Flowtec AG

1.5.2 Thermal Parameters (Zone 1)

Temporature fabble for years forms with sensor not installed 1													
The color The	Gesehen	mass 300/500, Proline Cubemass 300/500	Proline Pro	4.00	800	1	ŀ	-	1				
Transport Color	Exgendit	prameter	Thermal P	205	205	H	+	Ħ	Ħ		-		
Properation Color CHRIST	at the control of the	Cours 11 50	150	150	Н	H	Н	H	T	-	3		
The parameter The paramete	Gezeichnet	Wing levex, ATEX, CSA, CCSAUS	Control Dr.	200	205	H		H	H	1			
The parameter Author The parameter Author The parameter The parame	Charles 2 to 2 to 2	E 22 162019/Bit K DOA OOA OOA		150	150	+		t	t	T	•	8	Promuss
Transport Company Co		-		205	205					T	-		
The parameter Cable Cabl		2 0		205	205				H	Т	-	00	Poppass
Temperature table for versions with sensor not insulated	4	70	Vendenigen	350	275	Н	H	H	Н	П		- 3	
Trans. T				(240)	1240	Ħ	H	H	H	11	-		
Transport Compare Co				240	240	Ħ		H	H	11	+ .		
Trans Tran				150	150	t		+	1	t	+		
Fig. Trans. Tra				150	150			1	1	П	+	$\overline{}$	
Times Time				240	240	Н	H	H	H	П	-		
Trans. T				240	240		+	H	H	T			
Trans. T		Sound - 1981 191 Junifer		150	188			H		1	-	8	
Trans. T	mmedum temperati			350	275	Н		Н	H	h	Τ.	3	
Trans. T	is not installed above		i	350	275				+	+	+	-	
Total First Total Tota			Notes	240	240			H	H	T			
Transport Cambridge Camb	240	-200 240 50 50 75 110 -200 60 - 75 110	Promass	240	240	188		+		T	+		
Fig.	(205)	60 - (90) (120)	2	150	150	Н		H	1	П	-	3	Contraction of the Contraction o
Trans. T	205	-50 205 50 50 90 120	Promass	(205)	(205)		-	H	+	+	+	ń	L.
Transport Tran	(205)	75 110	C	205	205	170		7		T	_	90	
Total Tota	205	-50 205 50 50 75 110	Promass	(205)	(205)	_	4		H	h	₽.		
Series Time (150)	-50 150 50 50 85 120 60 - 85 120		205	205					T			ssemo	
San Su Tone (150)	90 - 95 120		205	205			H	H	T			-	
Sant OH Tow Trans Town Town	(150)	95 120	T.	205	205	150			H	t	+	4	_
Perature table for versions with sensor not insulated Sansor Sas / DN True True True True True True True True	(300°C)	-50 150 50 50 95 130	Promass	(450°C)		10					-	8	
Temperature table for versions with sensor not insulated		Tree Trees Trees	Sensor			. 3		H	П	+	7	$\overline{}$	
						-	insulated	sornot	th som	sions w	for yer	ure table	Temperat

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

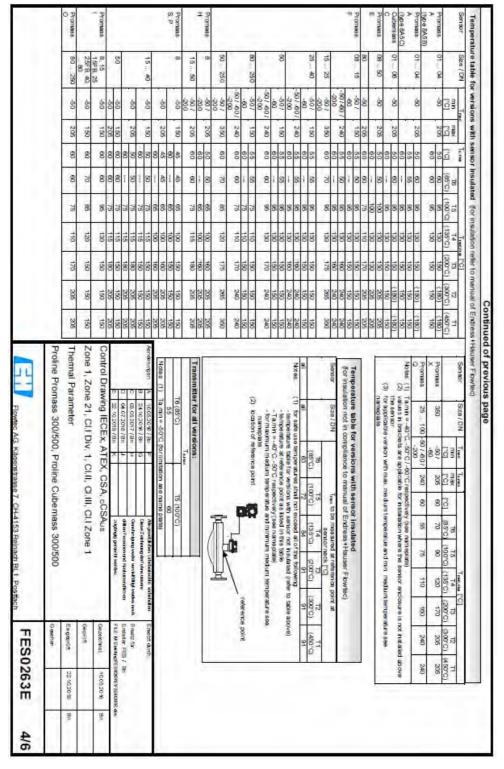
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Temperature buble for versicine with sensor not insuited for versicine with sensor not insuited for versicine with sensor not insuited for insuited																							
Columb C		Ï	Seeinen		0	300/500	mass	e Cube	Prolin	00/500,	mass 3	roline Pro		ŀ	- 1	1							
Search Martine Total Control	Ba	221020%	#Bridge x 3								ramete	hermal Pa		Н	+	Ħ	H		+	150	88	80	
Sear 104 Col. Fig. Fi			Sepice			one 1	CITZ	Q.III.	1, 01,1	ALI DIV.	ne 21, C	one 1, Zo	-	++	++	++			11	2005	Ś		
Sear IVN	B	100520%	Sezeichnet	10			SAUS	SA, of	TEX.	CEx, A	wing IE	ontrol Dra	436	++	#	Ħ	+	11		150	-58	15 40	
Sear IPM	8	\$0200EY E3020E,	LE MZ skdwgre		eden	to geradit w	2 ngbrs		×	219 / Bp	22,102		_	H	H	H	H	H	+	205	8		
Size CP4		9	inteller FEST	n mach	or Department	spe faria	General		- 1	017 /Bn	08.052		150	+	++	H	+		Н	150	Ś	00	
					olen unsers	skierrgder	Share 2		ଚ	18/80										205	2000	8.1	
Sear CN4			and a second	9	the obtained	atte carbita	Aros		9	46 / Br	_		-						-	205	2007	00	Pomass
Sear DN													350							350	2007		
Start (OH						L	(opp.)	Selien es	THE PERSON NAMED IN	or color in	o - Harrie	3							-	240	200		
Start Def Times						L	-	90		100	55	-							2	Ś	-867	- 5	
Star DN Total						Ц.	rc)	75(100			6 (85°C)	-	200	-				H		100	200		
Size DN						6				Tan			150		+	+			+		8		
Size DN										rsions:	rfor all w	Transmitte		Н	Н	H			Н	1	-507	80	-
Size DN													240	Н	+	Н	+	H	Н	1	108-10	2.1	
Size DN													500	+	+	Ŧ	+		+	1	88	25 40	٠.,
Size DN													350	E						350	-2007		
Size DN													240	+	H	+		+	+	3	-200		
Persture table for versions with sensor not insulated Sze/DN Trans Tr							100			meplate			150	H	H		H	H	H	+	8	1	
Persiture table for versions with sensor not insulated Sze/DN		đ	missegne m	nummed.	ate) eandmini	Speriet et	medum t	O'C respe	SOTO /-BI	caple ven					+	1			+	+	8 8		
Persiture table for versions with sensor not insulated Sze/DN		60		160	110	75	85			_	1	Promass	205	+	H				-	205	-50	2850	Plomass
Persiture table for versions with sensor not insulated Sze/DN True	66		170	120	98	8			10		Promass X	205	7							Ś	162	Cubernass	
Size DN True Town To		8		170	110	75	8		205		80 25	Promass				-			ľ				(Nype SASC)
Persture table for versions with sensor not insulated Sze/DN		50		150	120	8	8		150	100	SH 50		855	+	+		-		+	1	8	94	
Persiture table for versions with sensor not insulated		8	F	150	130	117	8	1	150		15HB 25	segnorical	205				-	H	_				-
perature table for versions with sensor not insulated		00		200'0)	0.35		88°C)			3.1	0 80	ORINO		~	53	1 3	_	-	-		Table 1	200	
																-	insulate	or not	th sens	ons wit	or versi	ire table f	emperatu

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

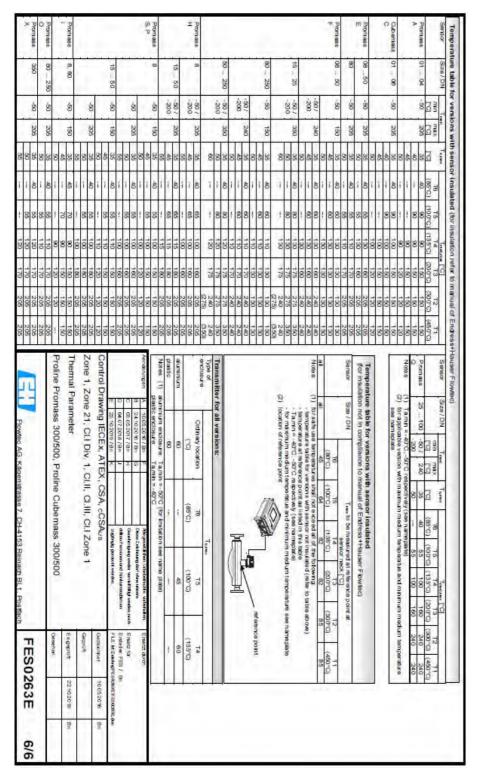
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

5/6	263E	FES0263E									4	888	588	888	110	: 88	1 1 8	888	g	8	15 50	
		Gesehen		ŏ	300/50	emass	ine Cut	0, Pro	300/50	omass	Proline Promass 300/500, Proline Cubemass 300/500	Ш	206	88	88); E	88				
Bn	22102019	Exgeptin							ter	arame	Thermal Parameter	Ш	150 205	88	88		81	88	206	-50		
		CHERT			one 1	II, CLIZ	I.II, Q.I	W. 1, C	CLID	one 21,	Zone 1, Zone 21, Cl.I Div. 1, Cl.II, Cl.II, Cl.I Zone 1	ш	150	88	88	88	1 &	88	8	-50	8	Promass S, P
Bri	10.05.20%	Gezeichnet			-	CSAus	CSA,	ATEX	ECEX	rawing	Control Drawing IECEx, ATEX, CSA, cCSAus	206	88	88	33	1 8	1	88		200		
900	FALE MISSISSIPPESSORE PERSONS CO.	SABANSON STA		serden	zuglegg geracht werden	200		×	22 102019 /Bn	E 23 1		205	205	88	1 8	8 1	8	8 8	206	8	15 50	_
	4	Entoder FES / Br	10000	Districted !	diffen Personen and Personandiren	080		4	04.07.2018 /Bn	0.0		205	205	8	8	85	i	88		-200		
		Ersatz für	water such	BRIDGE.	Geneterigung weder varsiellität werden	Come		Y	08,05,2017 /Bn	C 08,0		205	205	160	100	85	8	88	205	-60/	8	Piomass
		Ersetzi durdi	e College Sen	Constitution .	Chase Zolderung der den umsen	Dhan		0 7	24 1020% / Bn	B 241	velopinides	011	240	175	120	1	-	8			Ī	
			• •				Tamin = -40°C		Bunsopu	plastic endosure		350	275	175	128	88	1 8	88	350	200	50 250	
				me plate)	en see no	(for imital)	Tamin = -50°C (for imitation see hame plate)		auminum endosure.	Muune	No 188 (1)	240	240	170	110	i	ī	8				
		1		ł		-			80		plastic	240	240	170	100	8.8	1.8	88	1	200		
		90		40		1			00		auminum	130	130	130	110	31	51	88	2	-50/		
		(135°C)		(100°C)		(85°C)			(20)		ľ	150	150	150	110	65	I	8				
		74		75		16		ocation	Ordinary location	_	enclosure	188	150	150	110	65	á	8	8	ġ	80 250	
					Terres						Type of	240	728	175	130	i	*	8				
								8:	version	er for all	Transmitter for all versions:	350	275	175	130	8	Ì	50		-200	The second	
												350	275	75 68	88	8 ;	81	88	350	60	15 25	
								d	этеритерите	200		240	240	160	130	65	ì	50		-200		
	4	for applicable version with maximum medium temperature and minimum medium temperature	rimum mod	e and mir	temperat.	m medium	th madma	W LOSS ON	pplicable	(3) for a		248	240	160	130	8	8;	8,8	240	58/		
		STATE OF CHARGE AND ADDRESS OF TRANSPORT WINDOWS THE STATE OF TRANSPORT ADDRESS ADDRESS OF TRANSPORT ADDRESS OF TR	1001 61 1800	AND SHOOT	SELWING.	Car indicated in	District of the	With the state	The series of the series			150	150	188	88	95	ì	88	1		Ì	
					eplate)	(See D97)	Ta, min = 40°C, -50°C respectively (see nameplate)	C -50°C	m= 40%	(1) Tair	Notes	150	150	150	130	8	8	88	150	50	08 50	Promass
	1	+	160	18	:		8				,	205	205	170	110	9	1	8 8				
		240 240	188	88	8 8	. 4	88	240	100 -507	25	Promass	205	205	871	110	88	8	88	205	8	90	
	3	Н	170	110		4464	8					205	28	130	130			8				
	5	Н	170	110	65	-	8			7	×	205	205	130	130	88	1 8	88	400	100	00 00	Piteriass
	5	+	170	110	85	5	36	205	60	350	Promise	160	100	188	88	3 ;	3 1	88	305	5	1	
		205 206	170	110	1 8	1	88	4			0	205	205	150	130	+	ł	83				
	10	+	170	110	8,8	8	5 8	200	707	00	Promise	205	205	150	130	75	1	88	3	1		
	0	+	140	115	-	4	8	H	+			205	205	150	190	34 1	8	8 8	200	S	01 08	Dihamass
	9		140	115	-	ante	55			-		205	205	150	88	į	1	8 8				(type 8ASC)
	3	140 150	140	115	70	-	95	-		1	-	205	205	150	130	86	4	80				
		+	140	115	70	B	38 8	150	-50	8 80	Promets	205	205	150	130	85	55	8 8	205	-60	20.00	
	<i>o</i> 0	205	180	110	8	1	38				0	388	300	198	130	3	1	88	T			A PASSI
			180	110	8	4		_	50 -50	15 5	Patriage	205	+	150	188		8	8	205	-50	01 04	Promasa
	0	(300°C) (450°C	200°C)	(135°C)	(100°C)	(85°C)	rcj	i mac	23			450°C	(200°C)	200°C) (135°C) (2	(100°C) (1	(85°C)	[0]	(C)	3		
	6		- [C]	Transpar			Topic	Trac	2	NO / bzig	Sensor			CI	Treet, case	11		Torses		Tre	Size / DN	Sensor
																ated	ot insut	sensor r	ns with	rversio	e table for	Temperature table for versions with sensor not insulated
	1			M. BN	dd = Bl, BJ, BM, BN	8.8	×	IECEX/ATEX	ES	a special	with different characters											
	-	Company		2	200	1			- 1	-	Distriction of the		-	T. Carrie	0	The same of the same	The second	1	Mary Control			Paris Land
	OSX5BXX - OD	* X XI ETA MELL		The same and	DO - AND	AC 200		Name of	- 00A	08.5		- America	8-5 dd	8.5	- DUUG	WOO BDDD	ad order	on excende	SIONS WIE	S TO VERS	Notes: This page applies to versions with extended order code covering:	DE PLATE D

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

2. Proline Promag 300/500

2.1 Marking

Proline Promag 3	00		
Model Code:		OF+0+++ +((++++	************
5*3*** – dd*ff*****	· · · · · · · · · · · · · · · · · · ·	O5*3*** – dd*ff****	^^^^^^ + #^^#
dd = Approval:	ff = I/O:	ATEX Marking	Marking of Ex protection
BB	CA, CB, CC, CD, HA, TA		Ex db eb ia [ia Ga] IIC T6T1 Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA, RA, SA, MA	- 1120	Ex db eb ia IIC T6T1 Gb
	SA, IVIA		Ex tb IIIC T** °C Db
BD	CA, CB, CC, CD, HA, TA		Ex db eb ia [ia Ga] IIC T6T1 Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA, RA, SA, MA	€ II2G	Ex db eb ia IIC T6T1 Gb
	JA, IVIA		Ex tb IIIC T** °C Db

Proline Proma	g 500 with ISEM integ	rated in transm	nitter	
Model Code: 5*5*** – dd*ff	****B**********+#**#	O5*5	*** – dd*ff****B****	*********+#**#
dd = Approval:	ff = I/O:	Device	ATEX Marking	Marking of Ex protection transmitter
BB	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	 II2(1)G II2(1)D	Ex db eb [ia Ga] IIC T6T5 Gb Ex tb [ia Da] IIIC T85°C Db
	NA, NA, SA, WA	Sensor	© II2G © II2D	Ex eb ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db
BD	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	 II2(1)G II2(1)D	Ex db [ia Ga] IIC T6T5 Gb Ex tb [ia Da] IIIC T85°C Db
	IVA, KA, SA, IVIA	Sensor	© II2G © II2D	Ex eb ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db
В7	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA,	Transmitter		Ex db eb [ia Ga] IIC T6 T5 Gb
	NA, RA, SA, MA	Sensor	€ II2G	Ex eb ia IIC T6T1 Gb
B8	CA, CB, CC, CD, HA,	Transmitter		Ex db [ia Ga] IIC T6 T5 Gb
	TA, BA, BB, GA, LA, NA, RA, SA, MA	Sensor		Ex eb ia IIC T6T1 Gb

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Promag 5 Model Code: 5*5*** – dd*ff****	3	·*# O:	5*5*** – dd*ff***	B************
dd = Approval:	ff = I/O:	Device	ATEX Marking	Marking of Ex protection transmitter
BN and BJ	HA, TA, BA, BB, GA, LA, NA, RA, SA, MA, CA, CB, CC, CD	Sensor	© II2G © II2D	Ex db ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db

2.2 Order Code

Extended order code Proline Promag 300:

5a3bcc - ddzeffghjlpstttuvww + #**#

O5a3bcc – ddzeffghjlpstttuvwwyy + #**# for OEM-version

5x3bxx – ddeffghjlpww + #**# for replacement transmitter only
05x3bxx – ddeffghjlpwwyy + #**# for replacement transmitter OEM

Extended order code Proline Promag 500:

5a5bcc - ddzeffghijkmnopstttuvww + #**#

O5a5bcc – ddzeffghijkmnopstttuvwwyy + #**# for OEM-version

5x5bxx – ddeffghijkmopqqww + #**# for replacement transmitter only 05x5bxx – ddeffghijkmopqqwwyy + #**# for replacement transmitter OEM

a = Type of sensor

H = Sensor Promag H
P = Sensor Promag P
W = Sensor Promag W

b = Generation

B = Generation of Flowmeter

cc = Size

any combination of number and/or letter up to size = DN3000

dd = Approval

Proline Promag 300:

BB = Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T* Db

BD = Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T* Db

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Promag 500:

BB = Ex db eb [ia] IIC T6...T4 Gb (transmitter) Ex eb ia IIC T6...T1 Gb (sensor) Ex tb IIIC T** Db (transmitter + sensor) BD = Ex db [ia] IIC T6...T1 Gb (transmitter) Ex eb ia IIC T6...T1 Gb (sensor) Ex tb IIIC T** Db (transmitter + sensor) BJ Ex db ia IIC T6...T1 Gb (sensor) Ex tb IIIC T* Db (sensor) = Ex db ia IIC T6...T1 Gb BN (sensor) Ex tb IIIC T* Db (sensor) **B7** = Ex db eb [ia] IIC T6...T1 Gb (transmitter) Ex eb [ia] IIC T6...T1 Gb (sensor) = Ex db [ia] IIC T6...T1 Gb B8 (transmitter) Ex eb [ia] IIC T6...T1 Gb (sensor)

z = **Design** (Promag W 300 and Proline W 500 only)

any single number or letter

e = Power Supply

D = 24Vdc

E = 100-230 Vac

I = 100-230 Vac / 24 Vdc

X = sensor only

ff = Input / Output 1

BA = 4-20mA HART

BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive) CB = 4-20mA WHART Ex i (passive)

CC = 4-20mA HART Ex i (active)

CD = 4-20mA WHART Ex i (active)

GA = Profibus PA

HA = Profibus PA Ex i

LA = Profibus DP

MA = Modbus RS485

NA = EtherNet/IP

RA = Profinet IO

SA = Foundation Fieldbus

TA = Foundation Fieldbus Ex i

XX = sensor only

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG


```
g = Input / Output 2
```

A = without Input/Output 2

B = 4-20 mA

C = 4-20mA Ex i (passive) D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input L = Pulse output Ex i K = Pulse output X = sensor only

h = Input / Output 3

A = without Input/Output 3

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input L = Pulse output Ex i K = Pulse output X = sensor only

i = Input / Output 4 (Proline 500 only)

A = without Input/Output 4

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input
J = Status input
L = Pulse output Ex i
K = Pulse output
X = sensor only

j = Display / Operation

with remote Display : O

without remote Display: any single number or letter except O

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

k = Integrated ISEM electronic (Proline 500 only)

A = Sensor

B = Transmitter

I = Housing (Proline 300 only)

any single number or letter

m = Transmitter Housing (Proline 500 only)

any single number or letter

n = Sensor Housing (Proline 500 only)

any single number or letter

o = Cable Sensor Connection (Proline 500 only)

any single number or letter

p = Cable Entry

any single number or letter

qq = Upgrade Kid

any double digits with combination of number or letter

s = Liner material

any single number or letter

ttt = Process connection

any triple digits with combination of number or letter

u = Electrode

any number or letter

v = Calibration

any single number or letter

w = Device Model (two digit) (refer to section 2.3 for assignment table of flowmeter to replacement

w transmitter)

A1 = product version 1

yy = Customer version (two digit)

any double digits with combination of number or letter

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, = Signs used as indicator for optional abbreviation of extended order code

+

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

2.3 Assignment of Flowmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline Promag 300/500 as follows:

Product flowm	eters			Replacement to	ransmitter ty	pe
model code		Generation code b =	device model code ww =	model code	Generation code b =	device model code ww =
5H*b**ww, 5P*b**ww, 5W*b**ww,	O5H*b**ww O5P*b**ww O5W*b**ww	В	A1	5x*bxxww, O5x*bxxww	В	A1

2.4 Parameters

2.4.1 Electrical Parameters

Power Supply		
Order Code	terminal no.	values
e =		
D 1)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC}$
		$U_M = 250Vac$
E 1)	No. 1(L+/L), 2(L-/N)	$U_N = 85264V_{AC}$
		$U_{M} = 250 \text{Vac}$
²⁾	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC} / 85264V_{AC}$
		$U_{M} = 250 \text{ V}$

- 3) applicable for products with approval code dd = BA, BB, BC, BD, B7, B8
- 4) applicable for products with approval code dd = BI, BJ, BM, BN

Input/Output 1			
Order Code	terminal no.	values	
ff =			
BA, BB, MA	No. 26, 27	$U_N = 30V_{DC}$	
		U _M = 250Vac	
LA, GA, SA	No. 26, 27	$U_N = 32V_{DC}$	
		U _M = 250Vac	
CA, CB	No. 26, 27	$U_i = 30V$	
		$I_i = 100 \text{mA}$	
		$P_i = 1.25W$	
		$L_i = 0$	
		$C_i = 0$	
CC, CD	No. 26, 27	1)	2)
		$U_0 = 21.8V$	$U_0 = 21.8V$
		$I_0 = 90mA$	$I_0 = 90mA$
		$P_0 = 491 \text{mW}$	$P_0 = 491 \text{mW}$
		$L_0 = 4.1 \text{mH (IIC)} /$	$L_0 = 9mH (IIC) /$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

		15mH (IIB) C ₀ = 160nF (IIC) / 1160nF (IIB)	39mH (IIB) C ₀ = 600nF (IIC) / 4000nF (IIB)
		Ui = 30V Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH	Ui = 30V Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH
НА, ТА	No. 26, 27	Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 30V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF	Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 32V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF
NA, RA	IO1 / RJ45	$U_N = 30V_{DC}$ $U_M = 250Vac$	

¹⁾ applicable for products with approval code dd = BB, BD, B7, B8

²⁾ applicable for products with approval code dd = BM, BN

Input/Output 2		
Order Code	terminal no.	values
g =		
C, G, K	No. 24, 25	$ \begin{array}{lll} U_i &= 30V \\ I_i &= 100 mA \\ P_i &= 1.25W \\ L_i &= 0 \\ C_i &= 0 \end{array} $
B, D, E, F, I, J, L	No. 24, 25	$\begin{array}{rcl} U_N &= 30 V_{DC} \\ U_M &= 250 Vac \end{array}$
Н	No. 24, 25	$U_{N} = 30V_{DC}$ $I_{N} = 100mA_{DC} / 500mA_{AC}$ $U_{M} = 250Vac$

Input/Output 3		
Order Code	terminal no.	values
h =		
C, G, K	No. 22, 23	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 22, 23	$U_N = 30V_{DC}$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

		$U_M = 250VaC$	
Н	No. 22, 23	$U_N = 30V_{DC}$	
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$	
		$U_M = 250 Vac$	
Input/Output 4			

Input/Output 4		
Order Code	terminal no.	values
i =		
C, G, K	No. 20, 21	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 20, 21	$U_N = 30V_{DC}$
		$U_M = 250 Vac$
Н	No. 20, 21	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_M = 250Vac$

Service Interface		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	Service Interface	Service Interface shall only be installed in areas
		which are known to be non hazardous
not for:	Service Interface	$U_N = 3.3V$
BB, BD, B7, B8		

Antenna bushing		
Order Code dd =	terminal no.	values
BB, BJ, BN, B7	N connector	See conditions of safe use

Display remote		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	No. 81, 82, 83, 84	Uo = 3.9V
		Io = 1.5A (spark), 200mA (power)
		Po = 600mW
		$Ri = 2.6\Omega$
		$Co = 670\mu F$
		Lo = 0
not for:	No. 81, 82, 83, 84	$U_N = 3.3V$
BB, BD, B7, B8		$I_N = 150 \text{mA}$

For Transmitter with approval code dd = BB, BD, B7 and B8 connected to the Remote Display of Endress+Hauser, Type DKX001 or ODKX001, the cable parameter with ration $L/R = \le 0.024$ mH/ Ω applies.

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Remote Transmitter and Remote Sensor:

 5^{*****} -... and 05^{****} -... with order code dd = BB, BD, B7, B8 in combination with k = B:

Transmitter:

terminals 4, 5, 6, 7, 8, 32, 33, -> Uo = 26.6V, Io = 19.2mA, Po = 128mW,

34, 35, 36, 37 Lo = 20mH, Co = 94nF

and

Uo = 13.3V, Io = 39.2mA, Po = 131mW,

Lo = 20mH, Co = 94nF

terminals 41, 42 \rightarrow U_N = 60V, I_N = 90mA

Sensor:

terminals 4, 5, 6, 7, 8, 32, 33, \rightarrow Ui = 26.6V, Ii = n.a., Pi = n.a., Li = 0, Ci = 0

34, 35, 36, 37

terminals 41, 42 $\rightarrow U_N = 60V$, $I_N = 90mA$

Interconnection of circuit connected to terminals 4, 5, 6, 7, 8, 37, 36 for use of a cable with a maximum length of 200m is allowed when using a cable which has the following parameters:

Cable inductance $\leq 1 \text{ mH/km}$ Cable capacitance $\leq 0.42 \mu\text{F/km}$

 5^{****} -... and 05^{****} -... with order code dd = BJ, BN in combination with k = A:

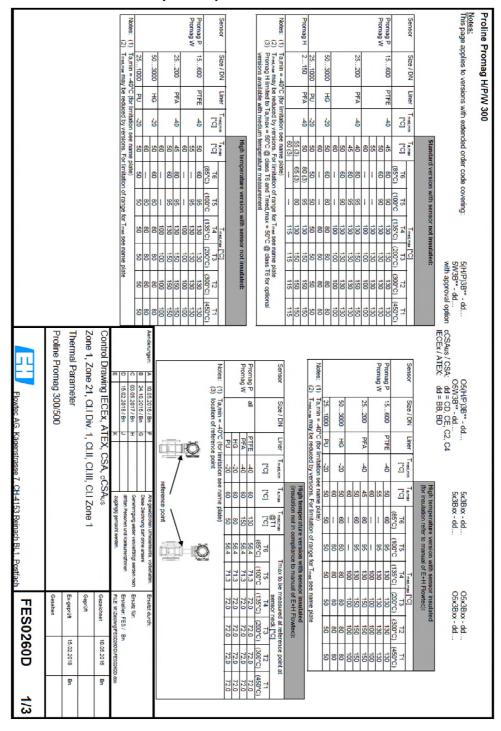
Transmitter:

terminals 61, 62 $-> U_N = 35V$ terminals 63, 64 $-> U_N = 3.3V$

Sensor:

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass


300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

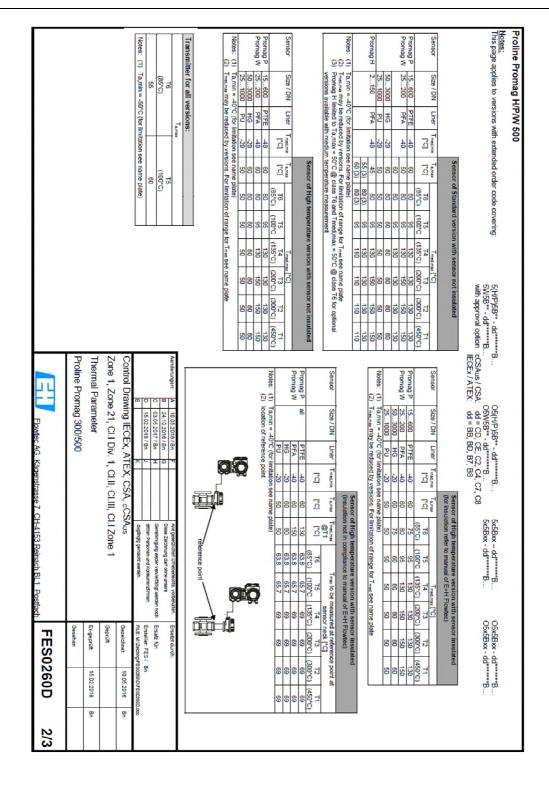
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

2.4.2 Thermal Parameters (Zone 1)

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

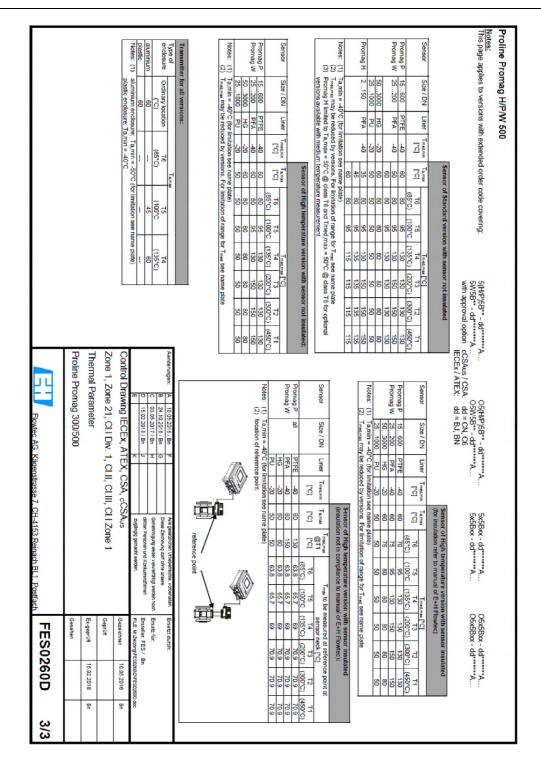
300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

3 Proline Promag 300/500

3.1 Marking

Proline Promag 300			
Model Code: 5*3*** – dd*ff*********+#**#			*********+#**#
dd = Approval:	ff = I/O:	ATEX Marking	Marking of Ex protection
BB	CA, CB, CC, CD, HA, TA	☑ II2(1)G	Ex db eb ia [ia Ga] IIC T6T1 Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA, RA, SA, MA		Ex db eb ia IIC T6T1 Gb
	SA, IVIA		Ex tb IIIC T** °C Db
BD	CA, CB, CC, CD, HA, TA		Ex db eb ia [ia Ga] IIC T6T1 Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA, RA, SA, MA	€ II2G	Ex db eb ia IIC T6T1 Gb
	JA, IVIA		Ex tb IIIC T** °C Db

Proline Proma	Proline Promag 500 with ISEM integrated in transmitter			
Model Code: 5*5*** – dd*ff	Model Code: 5*5*** – dd*ff****B************+#**#			
dd = Approval:	ff = I/O:	Device	ATEX Marking	Marking of Ex protection transmitter
BB	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	 II2(1)G II2(1)D	Ex db eb [ia Ga] IIC T6T5 Gb Ex tb [ia Da] IIIC T85°C Db
	NA, NA, SA, WA	Sensor	© II2G © II2D	Ex eb ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db
BD	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA, NA, RA, SA, MA	Transmitter	 II2(1)G II2(1)D	Ex db [ia Ga] IIC T6T5 Gb Ex tb [ia Da] IIIC T85°C Db
	IVA, RA, SA, IVIA	Sensor	© II2G © II2D	Ex eb ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db
B7	CA, CB, CC, CD, HA, TA, BA, BB, GA, LA,	Transmitter		Ex db eb [ia Ga] IIC T6 T5 Gb
	NA, RA, SA, MA	Sensor	€ II2G	Ex eb ia IIC T6T1 Gb
B8	CA, CB, CC, CD, HA,	Transmitter		Ex db [ia Ga] IIC T6 T5 Gb
	TA, BA, BB, GA, LA, NA, RA, SA, MA	Sensor		Ex eb ia IIC T6T1 Gb

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Promag 5 Model Code: 5*5*** – dd*ff****	3	**# O!	5*5*** – dd*ff****	B************
dd = Approval:	ff = I/O:	Device	ATEX Marking	Marking of Ex protection transmitter
BN and BJ	HA, TA, BA, BB, GA, LA, NA, RA, SA, MA, CA, CB, CC, CD	Sensor	© II2G © II2D	Ex db ia IIC T6T1 Gb Ex ia tb IIIC T** °C Db

3.2 Order Code

Extended order code Proline Promag 300:

5a3bcc - ddzeffghjlpstttuvww + #**#

O5a3bcc – ddzeffghjlpstttuvwwyy + #**# for OEM-version

5x3bxx – ddeffghjlpww + #**# for replacement transmitter only
05x3bxx – ddeffghjlpwwyy + #**# for replacement transmitter OEM

Extended order code Proline Promag 500:

5a5bcc - ddzeffghijkmnopstttuvww + #**#

O5a5bcc – ddzeffghijkmnopstttuvwwyy + #**# for OEM-version

5x5bxx – ddeffghijkmopqqww + #**# for replacement transmitter only 05x5bxx – ddeffghijkmopqqwwyy + #**# for replacement transmitter OEM

a = Type of sensor

H = Sensor Promag H
P = Sensor Promag P
W = Sensor Promag W

b = Generation

B = Generation of Flowmeter

cc = Size

any combination of number and/or letter up to size = DN3000

dd = Approval

Proline Promag 300:

BB = Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T* Db

BD = Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T* Db

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

> 300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Endress+Hauser Flowtec AG Applicant:

Proline Promag 500:

BB = Ex db eb [ia] IIC T6...T4 Gb (transmitter) Ex eb ia IIC T6...T1 Gb (sensor) Ex tb IIIC T** Db (transmitter + sensor) BD = Ex db [ia] IIC T6...T1 Gb (transmitter) Ex eb ia IIC T6...T1 Gb (sensor) Ex tb IIIC T** Db (transmitter + sensor) BJ Ex db ia IIC T6...T1 Gb (sensor) Ex tb IIIC T* Db (sensor) = Ex db ia IIC T6...T1 Gb BN (sensor) Ex tb IIIC T* Db (sensor) **B7** = Ex db eb [ia] IIC T6...T1 Gb (transmitter) Ex eb [ia] IIC T6...T1 Gb (sensor) = Ex db [ia] IIC T6...T1 Gb B8 (transmitter) Ex eb [ia] IIC T6...T1 Gb (sensor)

Design (Promag W 300 and Proline W 500 only) Z

any single number or letter

Power Supply е

> D = 24Vdc

= 100-230Vac F

= 100-230Vac / 24Vdc

Χ = sensor only

ff Input / Output 1

= 4-20mA HART

BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive) CB

= 4-20mA WHART Ex i (passive)

CC = 4-20mA HART Ex i (active)

CD = 4-20mA WHART Ex i (active)

= Profibus PA GA

HA = Profibus PA Ex i

= Profibus DP LA

MA = Modbus RS485

NA = EtherNet/IP

RA = Profinet IO

SA = Foundation Fieldbus

= Foundation Fieldbus Ex i TA

XX = sensor only

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG


```
g = Input / Output 2
```

A = without Input/Output 2

B = 4-20mA

C = 4-20mA Ex i (passive) D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input L = Pulse output Ex i K = Pulse output X = sensor only

h = Input / Output 3

A = without Input/Output 3

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input L = Pulse output Ex i K = Pulse output X = sensor only

i = Input / Output 4 (Proline 500 only)

A = without Input/Output 4

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input
J = Status input
L = Pulse output Ex i
K = Pulse output
X = sensor only

j = Display / Operation

with remote Display : O

without remote Display: any single number or letter except O

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

k = Integrated ISEM electronic (Proline 500 only)

A = Sensor

B = Transmitter

I = Housing (Proline 300 only) any single number or letter

m = Transmitter Housing (Proline 500 only)

any single number or letter

n = Sensor Housing (Proline 500 only)

any single number or letter

o = Cable Sensor Connection (Proline 500 only)

any single number or letter

p = Cable Entry

any single number or letter

qq = Upgrade Kid

any double digits with combination of number or letter

s = Liner material

any single number or letter

ttt = Process connection

any triple digits with combination of number or letter

u = Electrode

any number or letter

v = Calibration

any single number or letter

w = Device Model (two digit) (refer to section 2.3 for assignment table of flowmeter to replacement

w transmitter)

A1 = product version 1

yy = Customer version (two digit)

any double digits with combination of number or letter

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, = Signs used as indicator for optional abbreviation of extended order code

+

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

3.3 Assignment of Flowmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline Promag 300/500 as follows:

Product flowmeters	Replacement transmitter type				
model code	Generation code b =	device model code ww =	model code	Generation code b =	device model code ww =
5H*b**ww, O5H*b**ww 5P*b**ww, O5P*b**ww 5W*b**ww, O5W*b**ww	В	A1	5x*bxxww, O5x*bxxww	В	A1

3.4 Parameters

3.4.1 Electrical Parameters

Power Supply		
Order Code	terminal no.	values
e =		
D 1)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC}$
		$U_M = 250Vac$
E 1)	No. 1(L+/L), 2(L-/N)	$U_N = 85264V_{AC}$
		U _M = 250Vac
²⁾	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC} / 85264V_{AC}$
		$U_{M} = 250 \text{ V}$

- 5) applicable for products with approval code dd = BA, BB, BC, BD, B7, B8
- 6) applicable for products with approval code dd = BI, BJ, BM, BN

Input/Output 1			
Order Code	terminal no.	values	
ff =			
BA, BB, MA	No. 26, 27	$U_N = 30V_{DC}$	
		U _M = 250Vac	
LA, GA, SA	No. 26, 27	$U_N = 32V_{DC}$	
		$U_M = 250Vac$	
CA, CB	No. 26, 27	$U_i = 30V$	
		$I_i = 100mA$	
		$P_i = 1.25W$	
		$L_i = 0$	
		$C_i = 0$	
CC, CD	No. 26, 27	1)	2)
		$U_0 = 21.8V$	$U_0 = 21.8V$
		$I_0 = 90mA$	$I_0 = 90mA$
		$P_0 = 491 \text{mW}$	$P_0 = 491 \text{mW}$
		$L_0 = 4.1 \text{mH (IIC)} /$	$L_0 = 9mH (IIC) /$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

		15mH (IIB) C ₀ = 160nF (IIC) / 1160nF (IIB)	39mH (IIB) C ₀ = 600nF (IIC) / 4000nF (IIB)
		Ui = 30V Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH	Ui = 30V Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH
НА, ТА	No. 26, 27	Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 30V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF	Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 32V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF
NA, RA	IO1 / RJ45	$\begin{array}{rcl} U_{N} &= 30V_{DC} \\ U_{M} &= 250Vac \end{array}$	

¹⁾ applicable for products with approval code dd = BB, BD, B7, B8

²⁾ applicable for products with approval code dd = BM, BN

Input/Output 2		
Order Code	terminal no.	values
g =		
C, G, K	No. 24, 25	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 24, 25	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 24, 25	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_M = 250 Vac$

Input/Output 3		
Order Code	terminal no.	values
h =		
C, G, K	No. 22, 23	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 22, 23	$U_N = 30V_{DC}$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

		U _M = 250Vac	
Н	No. 22, 23	$U_{N} = 30V_{DC}$ $I_{N} = 100\text{mA}_{DC} / 500\text{mA}_{AC}$	
		$U_{M} = 250 \text{Vac}$	
Input/Output 4			

Input/Output 4		
Order Code	terminal no.	values
i =		
C, G, K	No. 20, 21	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 20, 21	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 20, 21	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_M = 250 Vac$

Service Interface		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	Service Interface	Service Interface shall only be installed in areas
		which are known to be non hazardous
not for:	Service Interface	$U_N = 3.3V$
BB, BD, B7, B8		

Antenna bushing		
Order Code dd =	terminal no.	values
BB, BJ, BN, B7	N connector	See conditions of safe use

Display remote	Display remote			
Order Code	terminal no.	values		
dd =				
BB, BD, B7, B8	No. 81, 82, 83, 84	Uo = 3.9V		
		Io = 1.5A (spark), 200mA (power)		
		Po = 600mW		
		$Ri = 2.6\Omega$		
		$Co = 670\mu F$		
		Lo = 0		
not for:	No. 81, 82, 83, 84	$U_N = 3.3V$		
BB, BD, B7, B8		$I_N = 150 \text{mA}$		

For Transmitter with approval code dd = BB, BD, B7 and B8 connected to the Remote Display of Endress+Hauser, Type DKX001 or ODKX001, the cable parameter with ration $L/R = \le 0.024$ mH/ Ω applies.

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline Remote Transmitter and Remote Sensor:

 5^{****} and 05^{***} with order code dd = BB, BD, B7, B8 in combination with k = B:

Transmitter:

terminals 4, 5, 6, 7, 8, 32, 33, \rightarrow Uo = 26.6V, Io = 19.2mA, Po = 128mW,

34, 35, 36, 37 Lo = 20mH, Co = 94nF

and

Uo = 13.3V, Io = 39.2mA, Po = 131mW,

Lo = 20mH, Co = 94nF

terminals 41, 42 \rightarrow U_N = 60V, I_N = 90mA

Sensor:

terminals 4, 5, 6, 7, 8, 32, 33, -> Ui = 26.6V, Ii = n.a., Pi = n.a., Li = 0, Ci = 0

34, 35, 36, 37

terminals 41, 42 $\rightarrow U_N = 60V$, $I_N = 90mA$

Interconnection of circuit connected to terminals 4, 5, 6, 7, 8, 37, 36 for use of a cable with a maximum length of 200m is allowed when using a cable which has the following parameters:

Cable inductance $\leq 1 \text{ mH/km}$ Cable capacitance $\leq 0.42 \mu\text{F/km}$

 5^{****} -... and 05^{****} -... with order code dd = BJ, BN in combination with k = A:

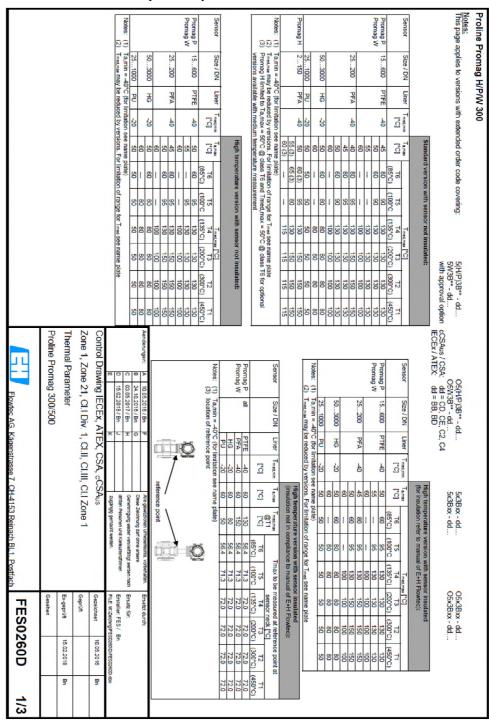
Transmitter:

terminals 61, 62 $-> U_N = 35V$ terminals 63, 64 $-> U_N = 3.3V$

Sensor:

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass


300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

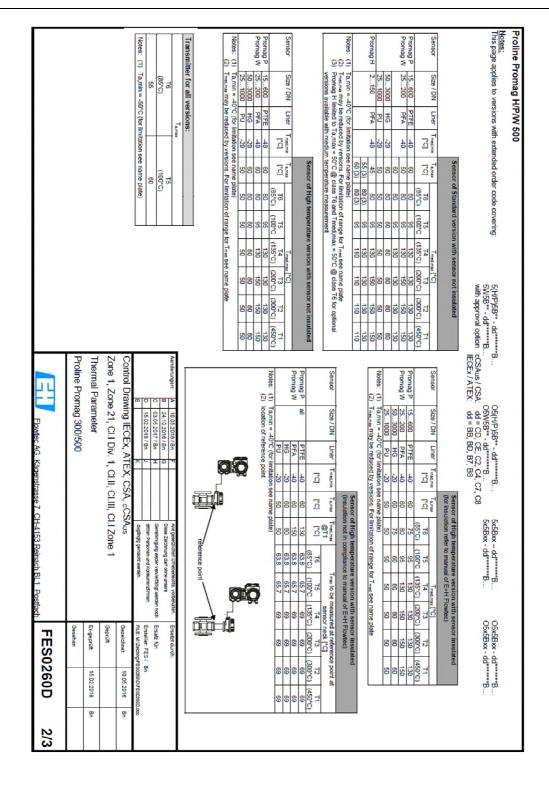
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

3.4.2 Thermal Parameters (Zone 1)

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

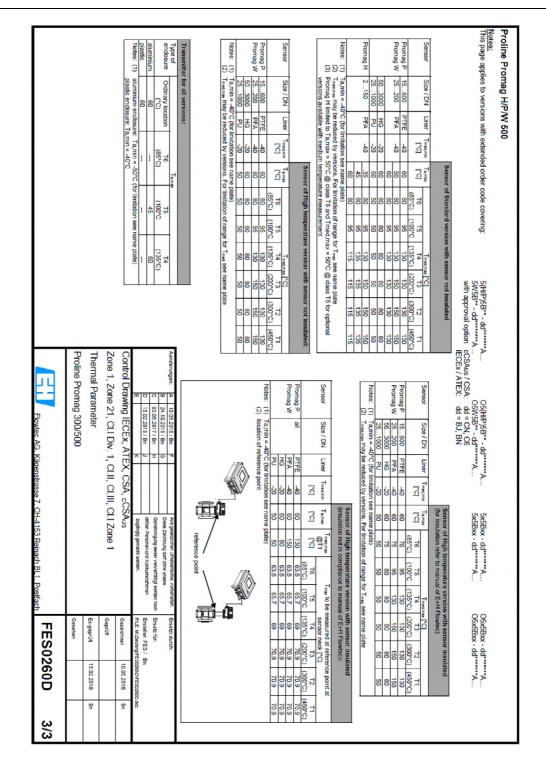
300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

4 Proline Prosonic Flow 300/500

4.1 Marking

Proline Prosonic	Proline Prosonic Flow G 300			
Model Code: 9*	Model Code: 9*3*** - dd*ff***********+#**#		O9*3*** - dd*ff***************	
dd = Approval	ff = I/O	ATEX marking	Marking of Ex protection	
BB	CA, CB, CC, CD, HA,	[©] II2(1)G	Ex db eb ia [ia Ga] IIC T6T1 Gb	
	TA		Ex tb [ia Da] IIIC T** °C Db	
	BA, BB, GA, LA, NA,		Ex db eb ia IIC T6T1 Gb	
	RA, SA, MA		Ex tb IIIC T** °C Db	
BD	CA, CB, CC, CD, HA,	[©] II2(1)G	Ex db ia [ia Ga] IIC T6T1 Gb	
	TA		Ex tb [ia Da] IIIC T** °C Db	
	BA, BB, GA, LA, NA,	[©] II2G	Ex db ia IIC T6T1 Gb	
	RA, SA, MA		Ex tb IIIC T** °C Db	

Proline Prosonic	Proline Prosonic Flow G 500 with ISEM integrated in sensor			
Model Code: 5*	Model Code: 5*5*** – dd*ff****A*********+#**#			
dd = Approval	ff = I/O	Device	ATEX marking	Marking of Ex protection transmitter
BJ and BN	HA, TA, BA, BB,	Sensor	[©] II2G	Ex db ia IIC T6T1 Gb
	GA, LA, NA, RA,			Ex ia tb IIIC T** °C Db
	SA, MA, CA, CB,			
	CC, CD			

	Proline Prosonic Flow P 500 with ISEM integrated in transmitter			
ii. Model Cod	ii. Model Code: 9P5*** – dd*ff***B*********+#			O9P5*** - dd*ff***B**********+#**#
iii.	DK9013 - dd**	****	ODK9	013 - dd*******
dd = Approval	ff = I/O	Device	ATEX marking	Marking of Ex protection
BB	CA, CB, CC, CD,	Transmitter		Ex db eb ia [ia Ga] IIC T6 T5 Gb
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db
	GA, LA, NA, RA,	Sensor	₿ II2G	Ex ia IIC T6T1 Gb
	SA, MA			Ex ia IIIC T** °C Db
BD	CA, CB, CC, CD,	Transmitter		Ex db ia [ia Ga] IIC T6 T5 Gb
	HA, TA, BA, BB,			Ex tb [ia Da] IIIC T85°C Db
	GA, LA, NA, RA,	Sensor	፟ II2G	Ex ia IIC T6T1 Gb
	SA, MA			Ex ia IIIC T** °C Db

4.2 Order Code

xtended order code Proline Prosonic Flow G 300:

9G3bcc - ddeffghjlpsstuuuvww + #**#

O9G3bcc – ddeffghjlpsstuuuvwwyy + #**# for OEM-versio

Extended order code Proline Prosonic Flow G 500:

9G5bcc - ddeffghijkmnopsstuuuvww + #**#

O9G5bcc – ddeffghijkmnopsstuuuvwwyy + #**# for OEM-version

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

G = Prosonic Flow G

b = Generation

B = Generation of Flowmeter

cc = Size

any double digits with combination of number or letter

dd = Approval

Proline Prosonic Flow 300:

BB = Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

BD = Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

Proline Prosonic Flow 500:

BJ = [Ex ia] IIC (transmitter)

Ex ia IIC T6...T1 Gb (sensor)

Ex tb IIIC T** Db (sensor)

= [Ex ia] IIC (transmitter)

Ex ia IIC T6...T1 Gb (sensor)

Ex tb IIIC T** Db (sensor)

e = Power Supply

BN

D = 24Vdc

E = 100-230 Vac

I = 100-230 Vac / 24 Vdc

X = sensor only

ff = Input / Output 1

BA = 4-20mA HART

BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive)

CB = 4-20mA WHART Ex i (passive)

CC = 4-20mA HART Ex i (active)

CD = 4-20mA WHART Ex i (active)

GA = Profibus PA

HA = Profibus PA Ex i

LA = Profibus DP

NA = EtherNet/IP

RA = Profinet IO

SA = Foundation Fieldbus

TA = Foundation Fieldbus Ex i

MA = Modbus RS485

X = sensor only

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG


```
g = Input / Output 2
```

В

A = without Input/Output 2

= 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input K = Pulse output Ex i L = Pulse output X = sensor only

h = Input / Output 3

A = without Input/Output 3

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output

F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input K = Pulse output Ex i L = Pulse output X = sensor only

i = Input / Output 4 (Proline 500 only)

A = without Input/Output 4

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input K = Pulse output Ex i L = Pulse output X = sensor only

j = Display / Operation

with remote Display : O

without remote Display: any single number or letter except O

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V.

Utrechtseweg 310,

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

k = Integrated ISEM electronic (Proline 500 only)

A = Sensor

I = Housing (Proline 300 only) any single number or letter

m = Transmitter Housing (Proline 500 only)

any single number or letter

n = Sensor Housing (Proline 500 only)

any single number or letter

o = Cable Sensor Connection (Proline 500 only)

any single number or letter

p = Cable Entry

any single number or letter

qq = Upgrade Kit

any double digits with combination of number or letter

rr = Existing Product (refer to section 3.3 for assignment table of flowmeter to replacement transmitter)

any double digits with combination of number or letter

ss = Measuring tube material, sensor version

any double digits with combination of number or letter

t = Pressure component

any single number or letter

uuu = Process connection

any triple digits with combination of number or letter

v = Calibration

any single number or letter

ww = Device model (two digit) (refer to section 3.3 for assignment table of flowmeter to replacement

transmitter)

A1 = product version 1

yy = Customer version (two digits)

any double digits with combination of number or letter

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, + = Signs used as indicator for optional abbreviation of extended order code

Extended order code Proline Prosonic Flow P 500:

9P5bcc - ddeffghjkmoqqrssttww + #**#

O9P5bcc – ddeffghjkmoqqrssttwwyy + #**# 9x5bxx – ddeffghijkmnoppqqww + #**#

for OEM-version for replacement transmitter

O9x5bxx – ddeffghijkmnoppqqwwyy + #**# for replacement transmitter OEM

b = Generation

B = Generation of Flowmeter

cc = Mounting Type

any double digits with combination of number and/or letter

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310,

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

dd = Approval Transmitter

BB = Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

BD = Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

e = Power Supply

П

D = 24Vdc

E = 100-230 Vac

= 100-230Vac / 24Vdc

ff = Input / Output 1

BA = 4-20mA HART

BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive)

CB = 4-20mA WHART Ex i (passive) CC = 4-20mA HART Ex i (active)

CD = 4-20mA WHART Ex i (active)

GA = Profibus PA

HA = Profibus PA Ex i

LA = Profibus DP

NA = EtherNet/IP

RA = Profinet IO

SA = Foundation Fieldbus

TA = Foundation Fieldbus Ex i

MA = Modbus RS485

g = Input / Output 2

A = without Input/Output 2

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output

F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input

J = Status input

K = Pulse output Ex i

L = Pulse output

h = Input / Output 3

A = without Input/Output 3

B = 4-20 mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310,

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input K = Pulse output Ex i L = Pulse output

i = Input / Output 4

A = without Input/Output 4

j = Display / Operation any single number or letter

k = Integrated ISEM electronic

B = transmitter

m = Transmitter Housing

any single number or letter

n = Cable Sensor Connection

any single number or letter

o = Cable Entry

any single number or letter

pp = Existing Product (see assignment of flowmeter to replacement transmitter)

PA = Prosonic Flow P 500

qq = Sensor type

any double digits with combination of number and/or letter

r = Process Temperature

any single number or letter

ss = Cable

any double digits with combination of number and/or letter

tt = Installation set

any double digits with combination of number and/or letter

ww = Device model (two digit) (see assignment of flowmeter to replacement transmitter)

A2 = product version 2

yy = Customer version (two digits)

any double digits with combination of number or letter

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, + = Signs used as indicator for optional abbreviation of extended order code

Extended order code Proline Prosonic Flow P 500 Clamp-On sensor:

DK9013 - cddqqrttssww + #**#

ODK9013 – cddqqrttsswwyy + #**# for OEM-version

c = Alteration Kit

any single number or letter

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V. Utrechtseweg 310,

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

dd = Approval

Proline Prosonic Flow P 500:

BB = Ex db eb [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

BD = Ex db [ia] IIC T6...T1 Gb

Ex tb IIIC T** Db

qq = Sensor type

any double digits with combination of number and/or letter

r = Process Temperature

any single number or letter

tt = Cable

уу

any single number or letter

ss = Installation set

any double digits with combination of number and/or letter

ww = Device model (two digit) (see assignment of flowmeter to replacement

transmitter)

A2 = product version 2

Customer version (two digits)

any double digits with combination of number or letter

Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

 $\#_{i}$ + = Signs used as indicator for optional abbreviation of extended order code

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

4.3 Assignment of Flowmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline Prosonic Flow G 300/500 as follows:

Product flowmeters		Replacement transmitter type				
model code	Generation code b =	device model code ww =	model code	Generation code b =	existing product pp =	device model code ww =
9G*b**ww, 09G*b**ww	В	A1 / A2	9x*bxxppww, O9x*bxxppww	В	AA	A1 / A2
9P*b**ww, 09P*b**ww	В	A1 / A2	9x*bxxppww, O9x*bxxppww	В	AB	A1 / A2

4.4 Parameters

4.4.1 Electrical Parameters

Power Supply		
Order Code	terminal no.	values
e =		
D 1)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC}$
		$U_{M} = 250 Vac$
E 1)	No. 1(L+/L), 2(L-/N)	$U_N = 85264V_{AC}$
		$U_M = 250 Vac$
1 ²⁾	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC} / 85264V_{AC}$
		$U_{M} = 250 \text{ V}$

- 7) applicable for products with approval code dd = BA, BB, BC, BD, B7, B8
- 8) applicable for products with approval code dd = BI, BJ, BM, BN

Input/Output 1		
Order Code	terminal no.	values
ff =		
BA, BB, MA	No. 26, 27	$U_N = 30V_{DC}$ $U_M = 250Vac$
LA, GA, SA	No. 26, 27	$U_N = 32V_{DC}$ $U_M = 250Vac$
CA, CB	No. 26, 27	$U_i = 30V$ $I_i = 100mA$
		$P_i = 1.25W$ $L_i = 0$
		$C_i = 0$

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Input/Output 1			
Order Code ff =	terminal no.	values	_
CC, CD	No. 26, 27	1) U _O = 21.8V I _O = 90mA P _O = 491mW L _O = 4.1mH (IIC) / 15mH (IIB) C _O = 160nF (IIC) / 1160nF (IIB) Ui = 30V	2) U _O = 21.8V I _O = 90mA P _O = 491mW L _O = 9mH (IIC) / 39mH (IIB) C _O = 600nF (IIC) / 4000nF (IIB) Ui = 30V
		Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH	Ii = 10mA Pi = 0.3W Ci = 6nF Li = 4.1mH
НА, ТА	No. 26, 27	Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 30V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF	Profibus PA (Fisco Field Device) / Foundation Fieldbus Ui = 32V Ii = 570mA Pi = 8.5W Li = 10µH Ci = 5nF
NA, RA	IO1 / RJ45	$\begin{array}{c} U_{N} = 30V_{DC} \\ U_{M} = 250Vac \end{array}$	

¹⁾ applicable for products with approval code dd = BB, BD, B7, B8

²⁾ applicable for products with approval code dd = BM, BN

Input/Output 2		
Order Code	terminal no.	values
g =		
C, G, K	No. 24, 25	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 24, 25	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 24, 25	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Input/Output 3		
Order Code	terminal no.	values
h =		
C, G, K	No. 22, 23	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 22, 23	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 22, 23	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

Input/Output 4		
Order Code	terminal no.	values
i =		
C, G, K	No. 20, 21	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 20, 21	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 20, 21	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

Service Interface		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	Service Interface	Service Interface shall only be installed in areas
		which are known to be non hazardous
not for:	Service Interface	$U_N = 3.3V$
BB, BD, B7, B8		

Antenna bushing		
Order Code dd =	terminal no.	values
BB, BJ, BN, B7	N connector	See conditions of safe use

Display remote		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	No. 81, 82, 83, 84	Uo = 3.9V
		lo = 1.5A (spark)
		200mA (power)

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

		Po = 600mW $Ri = 2.6Ω$ $Co = 670μF$
		Lo = 0
not for:	No. 81, 82, 83, 84	$U_N = 3.3V$
BB, BD, B7, B8		$I_N = 150 \text{mA}$

For Transmitter with approval code dd = BB, BD, B7 and B8 connected to the Remote Display of Endress+Hauser, Type DKX001 or ODKX001, the cable parameter with ration L/R = \leq 0.024 mH/ Ω applies.

Proline Prosonic Flow G Remote Transmitter and Remote Sensor:

 $9G^{*****}$ -... and $O9G^{*****}$ -... with order code dd = BJ, BN, in combination with k = A:

Transmitter:

terminals 61, 62 $-> U_N = 35V$ terminals 63, 64 $-> U_N = 3.3V$

Sensor:

terminals 61, 62 $-> U_N = 35V$ terminals 63, 64 $-> U_N = 3.3V$

Proline Prosonic Flow P Remote Transmitter and Remote Sensor:

 $9P^{****}$ -... and $09P^{****}$ -... with order code dd = BB, BD in combination with k = B:

Transmitter:

CH1, CH2 -> Uo = 40V, Io = 36.7mA, Po =459mW, Li = n.a., Ci = n.a.

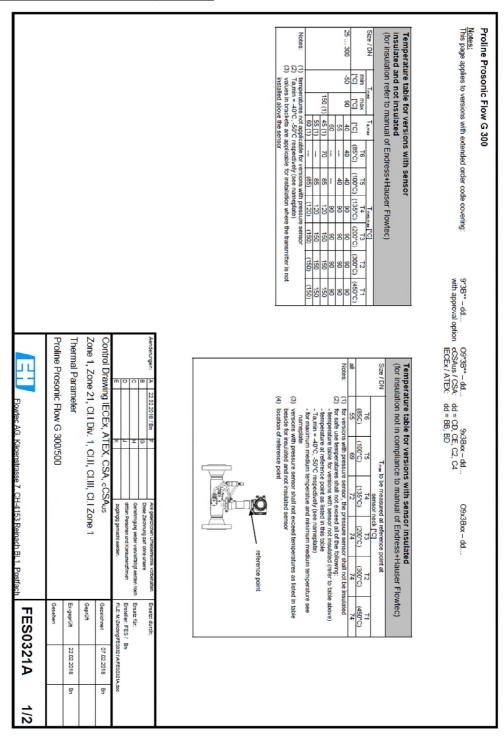
Sensor:

Connector \rightarrow Ui = 40V, Ii = n.a., Pi = n.a., Li = n.a., Ci = n.a.

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass


300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

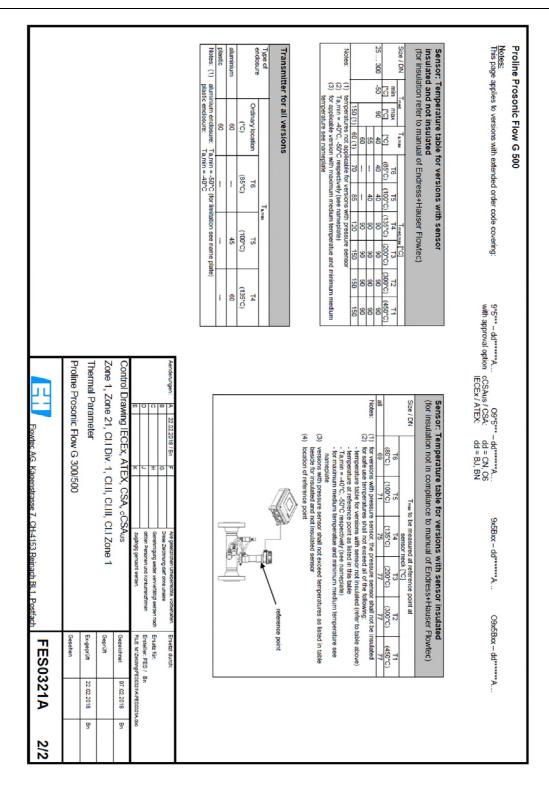
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

4.4.2 Thermal Parameters (Zone 1)

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

5 Proline t-mass 300/500

5.1 Marking

Proline t-mass F/I 300			
Model Code: 6F3*** – dd*ff***********		*****+#**#	O6F3*** - dd*ff****************
61	3*** - dd*ff*****	******	O6I3*** - dd*ff***************
dd = Approval	ff = I/O	ATEX marking	Marking of Ex protection
BB	CA, CB, CC, CD, HA,	[©] II2(1)G	Ex db eb ia [ia Ga] IIC T4T1 Gb
	TA		Ex db eb ia [ia Ga] IIC T4T1 Ga/Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA,		Ex db eb ia IIC T4T1 Gb
	RA, SA, MA		Ex db eb ia IIC T4T1 Ga/Gb
			Ex tb IIIC T** °C Db
BD	CA, CB, CC, CD, HA,	[©] II2(1)G	Ex db ia [ia Ga] IIC T4T1 Gb
	TA		Ex db ia [ia Ga] IIC T4T1 Ga/Gb
			Ex tb [ia Da] IIIC T** °C Db
	BA, BB, GA, LA, NA,		Ex db ia IIC T4T1 Gb
	RA, SA, MA		Ex db ia IIC T4T1 Ga/Gb
			Ex tb IIIC T** °C Db

Proline t-mass F/I 500 with ISEM integrated in sensor					
Model Code: 6F	Model Code: 6F5*** – dd*ff****A*************				
61	5*** – dd*ff****	\ ********	***+#**#	D6I5*** - dd*ff****A*****************	
dd = Approval	ff = I/O	Device	ATEX marking	Marking of Ex protection transmitter	
BJ and BN	HA, TA, BA, BB,	Transmitter		[Ex ia] IIC	
	GA, LA, NA, RA, S II(1)D Ex ia] IIIC				
	SA, MA, CA, CB,	Sensor		Ex db ia IIC T4T1 Gb	
	CC, CD			Ex db ia IIC T4T1 Ga/Gb	
				Ex ia tb IIIC T** °C Db	

5.2 Order Code

Extended order code Proline t-mass 300:

6F3bcc - ddeffghjlpsstttvww + #**#

613bcc - ddeffghjlpsstttuuvww + #**#

O6F3bcc – ddeffghjlpsstttvwwyy + #**# for OEM-version
O6I3bcc – ddeffghjlpsstttuuvwwyy + #**# for OEM-version

6x3bxx – ddeffghjlpssww + #**# for replacement transmitter
06x3bxx – ddeffghjlpsswwyy + #**# for replacement transmitter OEM

Extended order code Proline t-mass 500:

6F5bcc - ddeffghijkmnopsstttvww + #**#

615bcc - ddeffghijkmnopsstttuuvww + #**#

O6F5cc – ddeffghijkmnopsstttvwwyy + #**# for OEM-version O6I5cc – ddeffghijkmnopsstttuuvwwyy + #**# for OEM-version

6x5bxx – ddeffghijkmopssww + #**# for replacement transmitter
06x5bxx – ddeffghijkmopsswwyy + #**# for replacement transmitter OEM

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

b = Generation

B = Generation of Flowmeter

cc = Size

any combination of number and/or letter up to size = DN100 (t-mass F) / 1500mm (t-mass I)

dd = Approval

Proline t-mass 300:

BB = Ex db eb [ia] IIC T4...T1 Gb

Ex tb IIIC T* Db

BD = Ex db [ia] IIC T4...T1 Gb

Ex tb IIIC T* Db

Proline t-mass 500:

BJ = [Ex ia] IIC (transmitter)

Ex db ia IIC T4...T1 Gb (sensor)

Ex tb IIIC T** Db (sensor)
= [Ex ia] IIC (transmitter)

Ex db ia IIC T4...T1 Gb (sensor)

Ex tb IIIC T* Db (sensor)

e = Power Supply

BN

D = 24Vdc

E = 100-230 Vac

I = 100-230 Vac / 24 Vdc

X = sensor only

ff = Input / Output 1

BA = 4-20mA HART

BB = 4-20mA WHART

CA = 4-20mA HART Ex i (passive)

CB = 4-20mA WHART Ex i (passive)

CC = 4-20mA HART Ex i (active)

CD = 4-20mA WHART Ex i (active)

GA = Profibus PA

HA = Profibus PA Ex i

LA = Profibus DP

MA = Modbus RS485

NA = EtherNet/IP

RA = Profinet IO

SA = Foundation Fieldbus

TA = Foundation Fieldbus Ex i

XX = sensor only

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG


```
g = Input / Output 2
```

A = without Input/Output 2

B = 4-20mA

C = 4-20mA Ex i (passive) D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input J = Status input K = Pulse output Ex i L = Pulse output X = sensor only

h = Input / Output 3

A = without Input/Output 3

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input
J = Status input
K = Pulse output Ex i
L = Pulse output
X = sensor only

i = Input / Output 4 (Proline 500 only)

A = without Input/Output 4

B = 4-20mA

C = 4-20mA Ex i (passive)

D = Configurable IO

E = Pulse/Fraguency

E = Pulse/Frequency/Switch output F = Pulse output phase-shifted

G = Pulse/Frequency/Switch output Ex i

H = Relay

I = 4-20mA input
J = Status input
K = Pulse output Ex i
L = Pulse output
X = sensor only

j = Display / Operation

with remote Display : O

without remote Display: any single number or letter except O

k = Integrated ISEM electronic (Proline 500 only)

A = SensorI

This certificate and its schedules may only be reproduced in its entirety and without change

CSA Group Netherlands B.V.

Utrechtseweg 310,

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

I = Housing (Proline 300 only) any single number or letter

m = Transmitter Housing (Proline 500 only)

any single number or letter

n = Sensor Housing (Proline 500 only)

any single number or letter

o = Cable Sensor Connection (Proline 500 only)

any single number or letter

p = Cable Entry

any single number or letter

ss = material sensor

any double digits with combination of number or letter

ttt = Process connection

any triple digits with combination of number or letter

uu = gasket

any double number or letter

v = Calibration

any single number or letter

ww = Device Model (two digit) (refer to section 4.3 for assignment table of flowmeter to replacement

transmitter)

A1 = product version 1

yy = Customer version (two digits)

any double digits with combination of number or letter

** = Option in two digits (none, two or multiple of two digits)

any combination of number and/or letter

#, + = Signs used as indicator for optional abbreviation of extended order code

5.3 Assignment of Flowmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline t-mass 300/500 as follows:

Product flowmeters		Replacement transmitter type				
model code	Generation code b =	device model code ww =	model code	Generation code b =	existing product rr =	device model code ww =
6F*b** ww ,	В	A1	6x*bxxww,	В	n.a.	A1
O6F*b**ww			O6x*bxxww			
6l*b**ww,	В	A1	6x*bxxww,	В	n.a.	A1
06I*b**ww			O6x*bxxww			

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

5.4 Parameters

5.4.1 Electrical Parameters

Power Supply		
Order Code	terminal no.	values
e =		
D 1)	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC}$
		$U_{M} = 250 Vac$
E 1)	No. 1(L+/L), 2(L-/N)	$U_N = 85264V_{AC}$
		$U_{M} = 250 Vac$
1 ²⁾	No. 1(L+/L), 2(L-/N)	$U_N = 19.228.8V_{DC} / 85264V_{AC}$
		$U_{M} = 250 \text{ V}$

⁹⁾ applicable for products with approval code dd = BA, BB, BC, BD, B7, B8

¹⁰⁾ applicable for products with approval code dd = BI, BJ, BM, BN

Input/Output 1			
Order Code	terminal no.	values	
ff =			
BA, BB, MA	No. 26, 27	$U_N = 30V_{DC}$	
		U _м = 250Vac	
LA, GA, SA	No. 26, 27	$U_N = 32V_{DC}$	
		U _м = 250Vac	
CA, CB	No. 26, 27	$U_i = 30V$	
		$I_i = 100mA$	
		$P_i = 1.25W$	
		$L_i = 0$	
		$C_i = 0$	
CC, CD	No. 26, 27	1)	2)
		$U_0 = 21.8V$	$U_0 = 21.8V$
		$I_0 = 90mA$	$I_0 = 90mA$
		$P_0 = 491 \text{mW}$	$P_0 = 491 \text{mW}$
		$L_0 = 4.1 \text{mH (IIC)} /$	$L_0 = 9mH (IIC) /$
		15mH (IIB)	39mH (IIB)
		$C_0 = 160nF (IIC) /$	$C_0 = 600 nF (IIC) /$
		1160nF (IIB)	4000nF (IIB)
		Ui = 30V	Ui = 30V
		li = 10mA	li = 10mA
		Pi = 0.3W	Pi = 0.3W
		Ci = 6nF	Ci = 6nF
		Li = 4.1mH	Li = 4.1mH

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Input/Output 1			
Order Code	terminal no.	values	
ff =			
HA, TA	No. 26, 27	1)	2)
		Profibus PA (Fisco Field Device) / Foundation Fieldbus U _i = 30V I _i = 570mA P _i = 8.5W L _i = 10µH C _i = 5nF	$\begin{array}{ll} \underline{Profibus\ PA\ (Fisco}\\ \underline{Field\ Device})\ /\\ \underline{Foundation\ Fieldbus}\\ U_i &= 32V\\ I_i &= 570mA\\ P_i &= 8.5W\\ L_i &= 10\mu H\\ C_i &= 5nF \end{array}$
NA, RA	IO1 / RJ45	$U_N = 30V_{DC}$ $U_M = 250Vac$	

¹⁾ applicable for products with approval code dd = BB, BD, B7, B8

²⁾ applicable for products with approval code dd = BM, BN

Input/Output 2		
Order Code	terminal no.	values
g =		
C, G, K	No. 24, 25	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 24, 25	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 24, 25	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 \text{Vac}$

Input/Output 3		
Order Code	terminal no.	values
h =		
C, G, K	No. 22, 23	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 22, 23	$U_N = 30V_{DC}$
		$U_{M} = 250 Vac$
Н	No. 22, 23	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_{M} = 250 Vac$

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Input/Output 4		
Order Code	terminal no.	values
i =		
C, G, K	No. 20, 21	$U_i = 30V$
		$I_i = 100 \text{mA}$
		$P_i = 1.25W$
		$L_i = 0$
		$C_i = 0$
B, D, E, F, I, J, L	No. 20, 21	$U_N = 30V_{DC}$
		$U_M = 250 Vac$
Н	No. 20, 21	$U_N = 30V_{DC}$
		$I_N = 100 \text{mA}_{DC} / 500 \text{mA}_{AC}$
		$U_M = 250 Vac$

Service Interface		
Order Code	terminal no.	values
dd =		
BB, BD, B7, B8	Service Interface	Service Interface shall only be installed in areas
		which are known to be non hazardous
not for:	Service Interface	$U_N = 3.3V$
BB, BD, B7, B8		

Antenna bushing		
Order Code dd =	terminal no.	values
BB, BJ, BN, B7	N connector	See conditions of safe use

Display remote				
Order Code dd =	terminal no.	values		
BB, BD, B7, B8	No. 81, 82, 83, 84	$\begin{array}{rll} \text{Uo} &= 3.9\text{V} \\ \text{Io} &= 1.5\text{A (spark)} \\ & & 200\text{mA (power)} \\ \text{Po} &= 600\text{mW} \\ \text{Ri} &= 2.6\Omega \\ \text{Co} &= 670\mu\text{F} \\ \text{Lo} &= 0 \end{array}$		
not for: BB, BD, B7, B8	No. 81, 82, 83, 84	$U_N = 3.3V$ $I_N = 150mA$		

For Transmitter with approval code dd = BB, BD, B7 and B8 connected to the Remote Display of Endress+Hauser, Type DKX001 or ODKX001, the cable parameter with ration L/R = \leq 0.024 mH/ Ω applies.

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

Proline t-mass Remote Transmitter and Remote Sensor:

 6^{*****} -... and 06^{*****} -... with order code dd = BJ, BN in combination with k = A:

Transmitter:

terminals 61, 62, 63, 64 -> Uo = 13.8V, Io = 1.156A, Po = 3.3W

Sensor:

terminals 61, 62, 63, 64 -> Ui = 14V, Ii = 1.2A, Pi = 3.4W

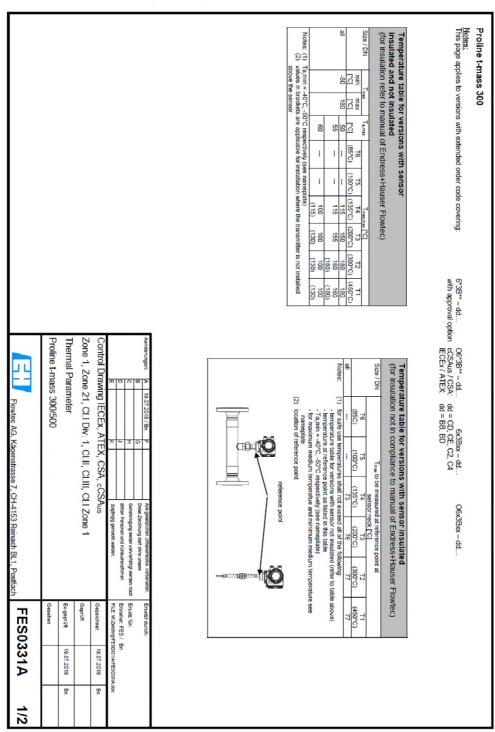
For interconnection of transmitter to sensor any cable may be used with the following requirements:

• L/R \leq 0.0089 mH/ Ω and $C_{cable} \leq$ 760nF for group IIC, L/R \leq 0.0356 mH/ Ω and $C_{cable} \leq$ 4.2µF for group IIB

• $L_{cable} \le 26 \mu H$ and $C_{cable} \le 760 nF$ for group IIC, $L_{cable} \le 104 \mu H$ and $C_{cable} \le 4.2 \mu F$ for group IIB

Certificate Number: Sira 16ATEX2219X

Equipment: Proline Promag 300/500, Proline Promass


300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

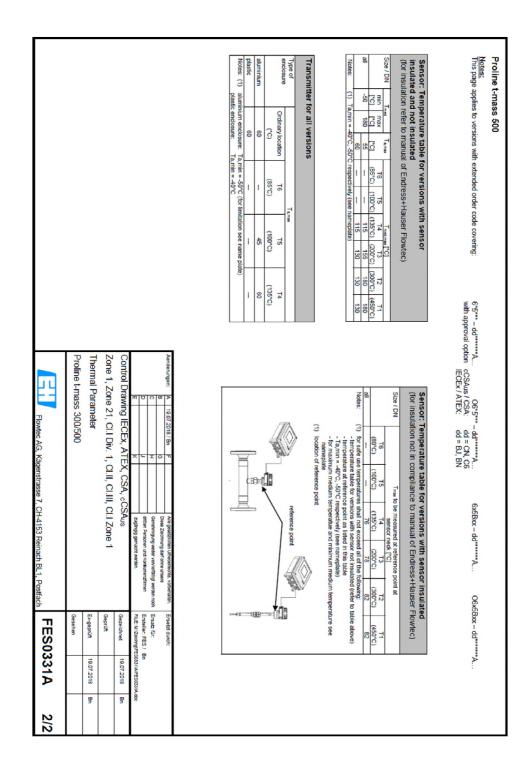
t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

5.4.2 Thermal Parameters (Zone 1)

This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: Sira 16ATEX2219X


Equipment: Proline Promag 300/500, Proline Promass

300/500, Proline Cubemass 300/500, Proline Prosonic Flow 300/500, Proline

t-mass 300/500

Applicant: Endress+Hauser Flowtec AG

This certificate and its schedules may only be reproduced in its entirety and without change