

1 **EU-TYPE EXAMINATION CERTIFICATE**

2 Equipment intended for use in Potentially Explosive Atmospheres Directive 2014/34/EU

3 Certificate Number: CSACa 21ATEX0001X Issue: 0

- 4 Equipment: Proline Promass K10 and Proline Promag P10
- 5 Applicant: Endress+Hauser Flowtec AG
- 6 Address: Kägenstrasse 7, 4153 Reinach BL 1, Switzerland
- 7 This equipment and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.
- 8 CSA Group Testing & Certification, notified body number 2899 in accordance with Articles 17 and 21 of Directive 2014/34/EU of the European Parliament and of the Council, dated 26 February 2014, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment intended for use in potentially explosive atmospheres given in Annex II to the Directive.

The examination and test results are recorded in the confidential reports listed in Section 14.2.

9 Compliance with the Essential Health and Safety Requirements, with the exception of those listed in the schedule to this certificate, has been assured by compliance with the following documents:

EN IEC 60079-0: 2018	EN 60079-1: 2014	EN IEC 60079-7: 2015 +A1: 2018
EN 60079-11: 2012	EN 60079-26: 2015	EN 60079-31: 2014

- 10 If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to Specific Conditions of Use identified in the schedule to this certificate.
- 11 This EU-Type Examination Certificate relates only to the design and construction of the specified equipment. If applicable, further requirements of this Directive apply to the manufacture and supply of this equipment.
- 12 The marking of the equipment shall be as per the Certificate Annexe.

Signed: D Magee

Title: Director of Operations

CSA Group Testing & Certification Inc. 178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 1 of 3 DQD 544.09 Rev 2020-10-23 This certificate and its schedules may only be reproduced in its entirety and without change

Project Number 80077053

SCHEDULE

EU-TYPE EXAMINATION CERTIFICATE

CSACa 21ATEX0001X Issue 0

13 **DESCRIPTION OF EQUIPMENT**

Proline 10 is a platform used for flowmeters type Proline Promass K10 and Proline Promag P10. All versions of Proline 10 flowmeter are available as a compact version where the transmitter is installed integral to the sensor.

All Proline Promag 10 and Proline Promass 10 flowmeters are available for an ambient temperature of -40°C to +60°C. The versions of flowmeters Proline Promass 10 and Proline Promag 10 are available for an enclosure protection of degree IP66 and IP67.

See the annexe attached to this certificate for further product details.

14 **DESCRIPTIVE DOCUMENTS**

14.1 Drawings

Issue 0: See the associated ATEX report R80077053 for a full list of drawings covered by this issue.

14.2 Associated CSA Reports and Certificate History

Issue	Date	Report number	Comment
0	11 August 2021	R80077053	The release of the prime certificate.

- 15 **SPECIFIC CONDITIONS OF USE** (denoted by X after the certificate number)
- 15.1. All equipment of the measurement system shall be included in the equipotential bonding. Along the intrinsically safe circuits potential equalization must exist.
- 15.2. The sensors may only be used for those process media, for which the wetted parts are known to be suitable (refer to nameplate or installation instructions for applicable materials).
- 15.3. It is not permitted to use versions of Proline Promag 10 and Proline Promass 10 without display module (refer to installation instructions for proper assembly).
- 15.4. For order code 'ee' = BC: Equipment of Proline Promass 10 and Proline Promag 10 with transmitter terminal compartment with type of protection Ex db (Zone 1) must be de-energized for 10 minutes before opening enclosure.
- 15.5. The Proline 10 Flowmeter that may include, stainless steel label tag with rope, when not bonded to earth used on coated metallic transmitter and/or sensor enclosure, shall be prevented from risk of electrostatic charging caused by friction and/or cleaning. WARNING POTENTIAL ELECTROSTATIC CHARGING HAZARD SEE INSTRUCTIONS
- 15.6. Only use battery Renata type lithium CR1632, 3V for display.
- 15.7. The flameproof joints are not intended to be repaired.
- 15.8. For Proline Promass 10 with order code 'ee' = BA, BC: Zone 0 is only applicable for the process medium in the measuring tube.

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 2 of 3

SCHEDULE

EU-TYPE EXAMINATION CERTIFICATE

CSACa 21ATEX0001X Issue 0

16 ESSENTIAL HEALTH AND SAFETY REQUIREMENTS OF ANNEX II (EHSRs)

The relevant EHSRs that are not addressed by the standards listed in this certificate have been identified and individually assessed in the reports listed in Section 14.2.

17 CONDITIONS OF MANUFACTURE

- 17.1 The use of this certificate is subject to the Regulations Applicable to Holders of CSA Certificates.
- 17.2 Holders of EU-Type Examination Certificates are required to comply with the conformity to type requirements defined in Article 13 of Directive 2014/34/EU.
- 17.3 The Proline 10 final product shall be subjected to a dielectric test.

CSA Group Testing & Certification Inc. 178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 3 of 3

Certificate Number:CSACa 21ATEX0001XEquipment:Proline Promass K10 and Proline Promag P10Applicant:Endress+Hauser Flowtec AG

1 Proline Promass K10

1.1 Order Code

Extended order code Proline Promass 10 8aBbcc – eehikInppgggrss + #**# O8aBbcc – eehikinppgggrsstt + #**# for OEM-version 8xBbdd – eehiklnooppss + #**# for replacement transmitter **O8xBbdd** – eehiklnooppsstt + #**# for replacement transmitter OEM 8 = Promass а = Type of sensor K = Promass K x = replacement transmitter without sensor В = Proline 10 b = Generation B = Generation of Flowmeter = Size CC any double digits with combination of number or letter = Assignment of replacement transmitter dd xx = standard transmitter x1 = transmitter for approval code ee = BA or C1 = Approval ee BA = Ex db eb [ib] IIB T4...T1 Gb Ex tb IIIC T** Db BC = Ex db [ib] IIB T4...T1 Gb Ex tb IIIC T** Db h = Power Supply = 100-230Vac / 24Vdc Ι Х = sensor only for replacement i = Input / Output = 4-20mA HART, Pulse/Frequency/Switch output В С = 4-20mA HART, Pulse/Frequency/Switch output Ex i Μ = Modbus RS485, 4-20mA = Modbus RS485, 4-20mA (Ex i) U = sensor only for replacement Х = Display / Operation k any single number or letter L = Housing any single number or letter = Cable Entry n any single number or letter = Existing product 00 any double digits with combination of number or letter = Measuring tube material pp any double digits with combination of number or letter = Process connection qqq any triple digits with combination of number or letter

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 1 of 12

Certificate Number:	CSACa 21ATEX0001X		
Equipment: Applicant:	Proline Promass K10 and Proline Promag P10 Endress+Hauser Flowtec AG		
	bration		

	any single number or letter
SS	= Device model (two digit)
	A1 = product version 1
tt	= Customer version (two digits)
	any double digits with combination of number or letter

+ = Additional optional order codes

- ** = Option in two digits (none, two or multiple of two digits) any combination of number and/or letter
- # = Signs used as indicator for optional abbreviation of extended order code

1.2 Marking

• - •	e*i***	******** * +# *******		
Approval ee =	valI/OMarking of Ex protectionInformation:i =Level of Prote			Information: Level of Protection representative for
BA	С, U В, М	 II2D Ex Sensor : II1/2G II2D or II2G II2D Transmitter: II2G II2G 	db eb ib [ib] IIB T4T1 Gb tb [ib] IIIC T** °C Db Ex ia IIB T4T1 Ga/Gb Ex tb IIIC T** °C Db Ex ib IIB T4T1 Gb Ex tb IIIC T** °C Db Ex db eb ib IIB T4T1 Gb	db -> electronic compartment eb -> terminal compartment ib -> display + sensor [ib] -> IO's tb -> enclosure
BC	C, U	 II2D Sensor: II1/2G II2D or II2G II2D II2D Transmitter: II2G II2G II2G II2D 	Ex tb IIIC T** °C Db Ex ia IIB T4T1 Ga/Gb Ex tb IIIC T** °C Db Ex ib IIB T4T1 Gb Ex tb IIIC T** °C Db Ex db ib [ib] IIB T4T1 Gb Ex tb [ib] IIIC T** °C Db	ib -> display + sensor tb -> enclosure db -> electronic compartmen terminal compartment ib -> display + sensor [ib] -> IO's tb -> enclosure

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 2 of 12 Rev 2020-10-23 This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number:	CSACa 21ATEX0001X
Equipment:	Proline Promass K10 and Proline Promag P10
Applicant:	Endress+Hauser Flowtec AG

		Sensor: & II1/2G II2D or II2G II2G II2D	Ex ia IIB T4T1 Ga/Gb Ex tb IIIC T** °C Db Ex ib IIB T4T1 Gb Ex tb IIIC T** °C Db	
BC	В, М	Transmitter: ⁽) II2G II2D Sensor:	Ex db ib IIB T4T1 Gb Ex tb IIIC T** °C Db	db -> electronic compartment + terminal compartment ib -> display + sensor tb -> enclosure
		ⓑ II1/2G ⓑ II2D or	Ex ia IIB T4T1 Ga/Gb Ex tb IIIC T** °C Db	
		😨 II2G 🖾 II2D	Ex ib IIB T4T1 Gb Ex tb IIIC T** °C Db	

1.3 Assignment of Howmeter to Replacement Transmitter

The replacement transmitters are assigned to the flowmeter Proline Promass 10 as follows:

Product flowmete	ers			Replacement tran	nsmitter	type	
model code	Generation code b =	Approval code ee =	device model code ss =	model code	Generation code b =	Approval code ee =	device model code ss =
8KB b **- eess , 08KB b **- eess	В	BA	A1	8xB bx1-ee ss, O8xB bx1-ee ss	В	BA	A1
	В	BC	A1	8xB bxx-eess , O8xB bxx-eess	В	BC	A1

1.4 Electrical Parameters

Power Suppl	Power Supply			
Order Code h =	approval code ee =	terminal no.	values	
Ι	BA, BC	No. 1(L+/L), 2(L-/N)	$U_N = 19.231.2V_{DC}/85264V_{AC}$ $U_M = 250 V$	

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Certificate Number:CSACa 21ATEX0001XEquipment:Proline Promass K10 and Proline Promag P10Applicant:Endress+Hauser Flowtec AG

Input/Output		
Order Code	terminal no.	Values for approval code
i =		ee = BA, BC
В	No. 26, 27	$U_N = 30V_{DC}$
	(4-20mA HART, active)	U _M = 250Vac
	No. 24, 25	$U_N = 30V_{DC}$
	(4-20mA HART, passive)	$U_{M} = 250 Vac$
	No. 22, 23	$U_N = 30V_{DC}$
	(Pulse, frequency, switch)	$U_{\rm M} = 250 {\rm Vac}$
С	No. 26, 27	$U_0 = 22.3V$
C	(4-20mA HART, active Ex i)	$I_0 = 93mA$
		$P_0 = 520 \text{mW}$
		$L_0 = 8mH$
		$C_0 = 500$ nF
		$U_{i} = 6.5V$
		$I_i = 10 \text{mA}$
		$P_i = 20 mW$
	No. 24, 25	$U_i = 30V$
	(4-20mA HART, passive Ex i)	$I_i = 100 \text{mA}$
	($P_{i} = 1.25W$
		$L_i = 0\mu H$
		$C_i = 6nF$
	No. 22, 23	$U_i = 30V$
	(Pulse, frequency, switch Ex i)	$I_i = 100 \text{mA}$
	(rube, requerey, switch Ext)	$P_i = 1.25W$
		$L_i = 0 \mu H$
		$C_i = 10$ nF
М	No. 26, 27	$U_{\rm N} = 30V$
1.1	(4-20mA, active)	$U_M = 250Vac$
	No. 24, 25	$U_{\rm N} = 30V$
	,	
	(4-20mA, passive)	$U_{M} = 250Vac$
	No. 22, 23	$U_{\rm N} = 3.3 V$
11	(Modbus)	$U_{\rm M} = 250 {\rm Vac}$
U	No. 26, 27	$U_0 = 22.3V$
	(4-20mA, active Ex i)	$I_0 = 93mA$
		$P_0 = 520 \text{mW}$
		$L_0 = 8mH$
		$C_0 = 500 nF$
		$U_{i} = 6.5V$
		$I_i = 0.5V$ $I_i = 10 \text{mA}$
		$P_i = 20 \text{mA}$
	No. 24, 25	
	No. 24, 25	$U_i = 30V$
	(4-20mA, passive	$I_i = 100 \text{mA}$
	Ex i)	$P_i = 1.25W$
		$L_i = 0\mu H$
		$C_i = 6nF$

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Certificate Number: CSACa 21ATEX0001X

Equipment: Proline Promass K10 and Proline Promag P10

Applicant:

Endress+Hauser Flowtec AG

No. 22, 23 (Modbus Ex i)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$U_{O} = 4.2V$ $I_{O} = 120mA$ $P_{O} = 130mW$ $L_{O} = 10mH$ $C_{O} = 900\mu F$

Service Interface			
Order Code ee =	terminal no.	values	
all	CDI	$\begin{array}{ll} U_i &= 7.0V\\ Ii &= n.a \mbox{ (current limited circuit)}\\ L_i &= 0 \ \mu H\\ C_i &= 0 \ \mu F \end{array}$	
		$\begin{array}{ll} U_{\rm O} = 3.9V \\ I_{\rm O} = 10mA \\ P_{\rm O} = 40mW \\ L_{\rm O} = 1H \\ C_{\rm O} = 300\mu F \end{array}$	

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 5 of 12

Certificate Number: CSACa 21ATEX0001X

Equipment: Proline Promass K10 and Proline Promag P10

Applicant: Endress+Hauser Howtec AG

1.5 Thermal Parameters

	3*BB** – dd with approval option	O8"BB** - dd cCSAus / CSA: dd = CC, C1, C3 IECEx / ATEX: dd = BA, BC
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T1 (450°C) 150 150	Temperature table for versions with sensor insulated (for insulation not in compliance to manual of Endress+Hauser Flowtec) Size / DN Twee to be measured at reference point at sensor nock [C] 16 15 14 16 15 14 18 100°C) (130°C) (200°C) all
		A 13.01.2020 / Bn F All geneticition tubalemotie vorbuhilin. Ersetzt durch: B G B G Bit Signame Bit Signame <t< th=""></t<>
		Zone 1, Zone 21, Cl.I Div. 1, Cl.II, Cl.II, Cl.I Zone 1
	T	Thermal Parameter 13.01.2020 Bn
	P	Proline Promass 10 Gesehen
		FIOWTEC AG, Kägenstrasse 7, CH-4153 Reinach BL1, Postfach FES0358A 1

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 6 of 12

Certificate Number:CSACa 21ATEX0001XEquipment:Proline Promass K10 and Proline Promag P10Applicant:Endress+Hauser Flowtec AG

2 Proline Promag P10

2.1 Order Code

Extended order code Proline Promag 10: **5aBbcc – eefghiklmnopppqrss + #**# 05aBbcc – eefghiklmnopppqrsstt + #**# 5xBbdd – eeghiklmnss + #**# 05xBbdd – eeghiklmnsstt + #**#**

for OEM-version for replacement transmitter for replacement transmitter OEM

5	=	Promag
а	=	Type of sensor
		P = Sensor Promag P
		x = replacement transmitter without sensor
В		Proline 10
b	=	Generation
		B = Generation of Flowmeter
CC	=	Size
		any combination of number and/or letter up to size = DN3000
dd	=	Assignment of replacement transmitter
		xx = standard transmitter
~~	_	x1 = transmitter for approval code ee = BA or C1
ee	-	Approval BA = Ex db eb [ib] IIB T4T1 Gb
		Ex tb IIIC T* Db
		BC = Ex db [ib] IIB T4T1 Gb
		Ex tb IIIC T* Db
f	=	Design
-		any single number or letter
g	=	Functionality
-		any single number or letter
h	=	Power Supply
		I = 100-230 Vac / 24 Vdc
_		X = sensor only for replacement
i	=	Input / Output
		B = 4-20mA HART, Pulse/Frequency/Switch output
		C = 4-20mA HART, Pulse/Frequency/Switch output Ex i
		M = Modbus RS485, 4-20mA
		U = Modbus RS485, 4-20mA (Ex i)
k	_	X = sensor only for replacement Display / Operation
ĸ	-	any single number or letter
I I	=	Housing
•	_	any single number or letter
m	=	Cable Sensor Connection Remote Version
		any single number or letter
n	=	Cable Entry
		any single number or letter
		CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 7 of 12

Certificat	te A	Innexe	CSA
Certificate	Num	ber: CSACa 21ATEX0001X	SP CSA GROUP"
Equipment:		Proline Promass K10 and Proline Promag P10	
Applicant:		Endress+Hauser Flowtec AG	
ο	=	Liner material	
	_	any single number or letter Process connection	
ррр	-	any triple digits with combination of number or letter	
q	=	Electrode	
•		any number or letter	
r	=	Calibration	
		any single number or letter	
SS	=	Device Model (two digit) A1 = product version 1	
tt	=	Customer version (two digits)	
		any double digits with combination of number or letter	
+	=	Additional optional order codes	
**	=	Option in two digits (none, two or multiple of two digits any combination of number and/or letter	5)
		· ·	

= Signs used as indicator for optional abbreviation of extended order code

2.2 Marking

Proline Pr	omag 1	10	
Model Code): 		
5*B***- e	e**i**	******** * +#**#	
O5*B***-	ee**i*	**************************************	
Approval	I/O	Marking of Ex protection	Information:
ee =	i =		Level of Protection for
			transmitter
			representative for
BA	C, U	Transmitter:	db -> electronic compartment
		🔄 II2G Ex db eb ib [ib] IIB T4T1 Gb	eb -> terminal compartment +
		🔄 II2D Ex tb [ib] IIIC T** °C Db	sensor
			ib -> display + sensor
		Sensor:	[ib] -> IO's
		🖾 II2G Ex eb ib IIB T4T1 Gb	tb -> enclosure
		🖾 II2D Ex tb IIIC T** °C Db	
	В, М	Transmitter:	db -> electronic compartment
		🖾 II2G Ex db eb ib IIB T4T1 Gb	eb -> terminal compartment +
		🖾 II2D Ex tb IIIC T** °C Db	sensor
			ib -> display + sensor
		Sensor:	tb -> enclosure
		🗟 II2G Ex eb ib IIB T4T1 Gb	
		🗟 II2D Ex tb IIIC T** °C Db	

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 8 of 12

Certificate Number: CSACa 21ATEX0001X

Equipment: Proline Promass K10 and Proline Promag P10

Applicant:

Endress+Hauser Flowtec AG

BC	C, U	Transmitter:	db -> electronic compartment + terminal compartment ib -> display + sensor [ib] -> IO's tb -> enclosure
	В, М	II2D EX ID IIIC 1 *** C DD Transmitter:	db -> electronic compartment + terminal compartment ib -> display + sensor tb -> enclosure

2.3 Assignment

The replacement transmitters are assigned to the flowmeter Proline Promag 10 as follows:

Product flowmete	rs			Replacement tran	smitter	type	
model code	Generation code b =	Approval code ee =	device model code ss =	model code	Generation code b =	Approval code ee =	device model code ss =
5PB b **- eess , 05PB b **- eess	В	BA	A1	5xB bx1-eess , O5xB bx1-eess	В	BA	A1
	В	BC	A1	5xB bxx-eess , O5xB bxx-eess	В	ВС	A1

2.4 Electrical Parameter

Power Suppl	У		
Order Code h =	approval code ee =	terminal no.	values
Ι	BA, BC	No. 1(L+/L), 2(L-/N)	$\begin{array}{l} U_{N} = 19.231.2 V_{DC} / 85264 V_{AC} \\ U_{M} = 250 V \end{array}$

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 9 of 12

Certificate Number:CSACa 21ATEX0001XEquipment:Proline Promass K10 and Proline Promag P10Applicant:Endress+Hauser Flowtec AG

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	al code
$ \begin{array}{c ccccc} B & & & No. 26, 27 & & U_N = 30V_{DC} \\ \hline & (4-20mA \ HART, \ active) & & U_M = 250Vac \\ \hline & No. 24, 25 & & U_N = 30V_{DC} \\ \hline & (4-20mA \ HART, \ passive) & & U_M = 250Vac \\ \hline & No. 22, 23 & & U_N = 30V_{DC} \\ \hline & No. 22, 23 & & U_M = 250Vac \\ \hline & No. 26, 27 & & U_O = 22.3V \\ \hline & (4-20mA \ HART, \ active \ Ex \ i) & & I_O = 93mA \\ P_O = 520mW \\ L_O = 8mH \\ C_O = 500nF \\ \hline & U_i = 6.5V \\ I_i = 10mA \\ P_i = 20mW \\ \hline & No. 24, 25 \\ \hline & (4-20mA \ HART, \ passive \ Ex \ i) & & I_i = 100mA \\ P_i = 1.25W \\ \hline \end{array} $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{ c c c c c c } \hline (4-20mA HART, active) & U_M = 250Vac \\ \hline No. 24, 25 & U_N = 30V_{DC} \\ \hline (4-20mA HART, passive) & U_M = 250Vac \\ \hline No. 22, 23 & U_N = 30V_{DC} \\ \hline (Pulse, frequency, switch) & U_M = 250Vac \\ \hline (Pulse, frequency, switch) & U_M = 250Vac \\ \hline (4-20mA HART, active Ex i) & I_O = 93mA \\ \hline P_O = 520mW \\ \hline L_O = 8mH \\ \hline C_O = 500nF \\ \hline U_i = 6.5V \\ \hline I_i = 10mA \\ \hline P_i = 20mW \\ \hline No. 24, 25 \\ \hline (4-20mA HART, passive Ex i) & I_i = 100mA \\ \hline P_i = 1.25W \\ \hline \end{tabular}$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{tabular}{ c c c c c c } \hline No. 22, 23 & U_N &= 30V_{DC} \\ \hline (Pulse, frequency, switch) & U_M &= 250Vac \\ \hline No. 26, 27 & U_O &= 22.3V \\ \hline (4-20mA HART, active Ex i) & I_O &= 93mA \\ \hline P_O &= 520mW \\ \hline L_O &= 8mH \\ \hline C_O &= 500nF \\ \hline U_i &= 6.5V \\ \hline I_i &= 10mA \\ \hline P_i &= 20mW \\ \hline \hline No. 24, 25 & U_i &= 30V \\ \hline (4-20mA HART, passive Ex i) & I_i &= 100mA \\ \hline P_i &= 1.25W \\ \hline \end{tabular}$	
$\begin{tabular}{ c c c c c } \hline (Pulse, frequency, switch) & U_M = 250Vac \\ \hline (No. 26, 27 & U_O = 22.3V \\ (4-20mA HART, active Ex i) & I_O = 93mA \\ P_O = 520mW \\ L_O = 8mH \\ C_O = 500nF \\ \hline U_i = 6.5V \\ I_i = 10mA \\ P_i = 20mW \\ \hline No. 24, 25 & U_i = 30V \\ (4-20mA HART, passive Ex i) & I_i = 100mA \\ P_i = 1.25W \\ \hline \end{tabular}$	
$ \begin{array}{c c} C & & \text{No. 26, 27} & & \text{U}_{0} = 22.3 \text{V} \\ (4\text{-}20\text{mA HART, active Ex i}) & & \text{I}_{0} = 93\text{mA} \\ P_{0} = 520\text{mW} \\ L_{0} = 8\text{mH} \\ C_{0} = 500\text{nF} \\ & & \text{U}_{i} = 6.5 \text{V} \\ I_{i} = 10\text{mA} \\ P_{i} = 20\text{mW} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{No. 24, 25} \\ (4\text{-}20\text{mA HART, passive Ex i}) & & \text{U}_{i} = 30 \text{V} \\ I_{i} = 100\text{mA} \\ P_{i} = 1.25 \text{W} \\ \end{array} $	
$ \begin{array}{ll} \mbox{(4-20mA HART, active Ex i)} & I_{O} &= 93mA \\ P_{O} &= 520mW \\ L_{O} &= 8mH \\ C_{O} &= 500nF \\ \\ U_{i} &= 6.5V \\ I_{i} &= 10mA \\ P_{i} &= 20mW \\ \end{array} \\ \hline \mbox{No. 24, 25} & U_{i} &= 30V \\ \mbox{(4-20mA HART, passive Ex i)} & I_{i} &= 100mA \\ P_{i} &= 1.25W \\ \end{array} $	
$\begin{array}{c} P_{O} = 520 mW \\ L_{O} = 8mH \\ C_{O} = 500 nF \\ \\ U_{i} = 6.5V \\ I_{i} = 10mA \\ P_{i} = 20mW \\ \end{array}$ No. 24, 25 (4-20mA HART, passive Ex i) $\begin{array}{c} U_{i} = 30V \\ U_{i} = 30V \\ I_{i} = 100mA \\ P_{i} = 1.25W \end{array}$	
$\begin{array}{c} L_{o} = 8mH\\ C_{o} = 500nF\\ \\ U_{i} = 6.5V\\ I_{i} = 10mA\\ P_{i} = 20mW\\ \hline \\ \text{No. 24, 25}\\ (4\text{-}20mA \text{ HART, passive Ex i}) & U_{i} = 30V\\ I_{i} = 100mA\\ P_{i} = 1.25W\\ \hline \end{array}$	
$\begin{array}{c} C_{o} = 500 n F \\ U_{i} = 6.5 V \\ I_{i} = 10 m A \\ P_{i} = 20 m W \\ \hline \\ (4\text{-}20 m A \text{ HART, passive Ex i}) & U_{i} = 30 V \\ I_{i} = 100 m A \\ P_{i} = 1.25 W \end{array}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{array}{ll} I_i &= 10 \text{mA} \\ P_i &= 20 \text{mW} \\ \hline \text{No. 24, 25} & & U_i = 30 \text{V} \\ (4\text{-}20 \text{mA HART, passive Ex i}) & & I_i &= 100 \text{mA} \\ P_i &= 1.25 \text{W} \\ \end{array} $	
$ \begin{array}{ll} I_i &= 10 \text{mA} \\ P_i &= 20 \text{mW} \end{array} \\ \hline \text{No. 24, 25} & & U_i &= 30 \text{V} \\ (4\text{-}20 \text{mA HART, passive Ex i}) & & I_i &= 100 \text{mA} \\ P_i &= 1.25 \text{W} \end{array} $	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
No. 24, 25 (4-20mA HART, passive Ex i) $U_i = 30V$ $I_i = 100mA$ $P_i = 1.25W$	
$\begin{array}{ll} (4\text{-}20\text{mA HART, passive Ex i}) & \text{I}_i &= 100\text{mA} \\ \text{P}_i &= 1.25\text{W} \end{array}$	
$P_i = 1.25W$	
$L_i = 0\mu H$	
$C_i = 6nF$	
No. 22, 23 $U_i = 30V$	
(Pulse, frequency, switch Ex i) $I_i = 100 \text{mA}$	
$P_i = 1.25W$	
$L_i = 0\mu H$	
$C_i = 10$ nF	
M No. 26, 27 U _N = 30V	
$(4-20\text{mA}, \text{active}) \qquad \qquad$	
No. 24, 25 $U_N = 30V$	
(4-20mA, passive) $U_M = 250Vac$	
No. 22, 23 $U_N = 3.3V$	
$\begin{array}{c} \text{(Modbus)} \\ (Modbus$	
U No. 26, 27 $U_0 = 22.3V$	
$(4-20\text{mA}, \text{active Ex i})$ $I_0 = 93\text{mA}$	
$P_0 = 520 \text{mW}$	
$L_0 = 8mH$	
$C_0 = 500$ nF	
U _i = 6.5V	
$I_i = 10 \text{mA}$	
$P_i = 20 \text{mW}$	
No. 24, 25 Ui = 30V	
$(4-20mA, passive I_i = 100mA$	
$\begin{array}{c} (1 2011A) \\ \text{Ex i} \end{array} \qquad \qquad P_i = 1.25W \end{array}$	
$L_{i} = 0 \mu H$	
$C_i = 6nF$	

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 10 of 12 Rev 2020-10-23 This certificate and its schedules may only be reproduced in its entirety and without change

Certificate Number: CSACa 21ATEX0001X

Equipment: Proline Promass K10 and Proline Promag P10

Applicant:

Endress+Hauser Flowtec AG

No. 22, (Modbu	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$C_i = 6nF$ Lo/Ro = 1.2mH/ Ω
	$U_{0} = 4.2V$ $I_{0} = 120mA$ $P_{0} = 130mW$ $L_{0} = 10mH$ $C_{0} = 900\mu F$

Service Interfac	e	
Order Code ee =	terminal no.	values
all	CDI	$\begin{array}{ll} U_i &= 7.0V\\ Ii &= n.a \mbox{ (current limited circuit)}\\ L_i &= 0 \ \mu H\\ C_i &= 0 \ \mu F \end{array}$
		$\begin{array}{ll} U_{\rm O} = 3.9V \\ I_{\rm O} = 10mA \\ P_{\rm O} = 40mW \\ L_{\rm O} = 1H \\ C_{\rm O} = 300\mu F \end{array}$

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 11 of 12

GROUP"

Certificate Number:CSACa 21ATEX0001XEquipment:Proline Promass K10 and Proline Promag P10Applicant:Endress+Hauser Flowtec AG

3.1 Thermal Parameter

oline Pror	nag P10																				
<u>tes:</u> s page applie	es to versior	ns with ex	ktended or	rder code c	overing:		5PBB** - dd		O5PB	3** - dd											
							with approval op		/CSA: dd = ATEX: dd =		1, C3										
			in	sulated a	nd <u>not ins</u>	sulated	s with sensor	ser Flow)					(for ins		not in c	omplian	ons with ce to ma			<u>ited</u>	
[°C] [°C] T6 T5 T				T _{med,m}		T1	Sensor	Size / DN	Liner	T _{med,min}	T _{a,max}	Tmed,max @T1	1	max to be	e measured sensor n		nce point a	at	_		
Promag P	all		40 (2) 4	(85°C			(200°C) (300°C 150 (2) 150 (2) 150 (2)				[°C]	[°C]	[°C]	T6 (85°C)	T5 (100°C	T4 (135°C)	T3 (200°C)	T2 (300°C)	T1 (450°	°C)
Notes: (1)			60	5 (3)) (3)		130 (2) 100 (2)	130 (2) 130 (2 100 (2) 100 (2		Promag P	all Ta,min = -40	all	-40 (2)	60 (2)	150 (2)			69	69	69	69	
									(4)	- tempera - for maxir location of re	mum me	dium temp point		id minimur		temperat	ure see na	meplate			
neral Note:								Aenderun	B C D E	1	F G H J K		Diese Zi Genehm dritten P zugängi	etzlichen Urhe eichnung darf igung weder v ersonen und H ig gemacht we	ohne unsere vervielfältigt w Konkurrenzfirr	erden noch	Ersetzt dure Ersatz für: Ersteller: Fl FILE: M1Zeid	ES/Bn	0/A)FES0360A	doc	
n addition to the temperature tables above it is not permitted to exceed the following range of medius emperature in dependence of the liner:				ange of medium		ol Drawing I								Gezeichnet	10.	02.2020	Bn				
PTFE (110°C	TFE (130°C): -40°C 130°C TFE (110°C): -10°C 110°C TFE (01°C): -20°C 90°C (optional version only) •FA: -20°C 150°C						1, Zone 21,		1, CI.II	, CI.III,	CI.I Zo	ne 1			Geprüft						
PFA: PU: Hard subbar								al Paramet								Ex-geprüft	10.	02.2020	Bn		
								Prolin	e Promag 1	J							Gesehen				
For permitted r	ange ot medi	ium tempe	rature, see	name plate					FIC FIC	wtec AG, K	lägensti	rasse 7, C	CH-4153	Reinach	BL1, Po	ostfach	FES	6036	60A		1

CSA Group Testing & Certification Inc.

178 Rexdale Boulevard, Toronto, Ontario M9W 1R3

Page 12 of 12