IB IL AO 2/U/BP (-PAC)

Inline Terminal With Two Analog Voltage Outputs

AUTOMATIONWORX

Data Sheet 5660_en_02

© PHOENIX CONTACT - 04/2007

1 Description

The terminal is designed for use within an Inline station. It is used to output analog voltage signals.

Features

- Two analog signal outputs
- Actuator connection in 2-wire technology with shield connection
- Voltage ranges:
 -10 V to +10 V (13-bit resolution) and
 0 V to +10 V (12-bit resolution)
- Output value data available in two formats (IB IL and IB ST)
- Parameterizable behavior of the outputs in the event of an error
- Process data update including conversion time of the digital/analog converter < 1 ms
- Very good output driver properties, therefore also suitable for long actuator cables
- Diagnostic indicators

This data sheet is only valid in association with the IL SYS INST UM E user manual or the Inline system manual for your bus system.

R

Make sure you always use the latest documentation. It can be downloaded at <u>www.download.phoenixcontact.com</u>.

A conversion table is available on the Internet at <u>www.download.phoenixcontact.com/general/7000_en_00.pdf</u>.

This data sheet is valid for the products listed on the following page:

Table of Contents

1	Description1		
2	Ordering Data		
3	Technical Data		
4	 Local Diagnostic and Status Indicators and Terminal Point Assignment 4.1 Local Diagnostic and Status Indicators		
5	Installation Instructions	7	
6	Internal Circuit Diagram		
7	Electrical Isolation	9	
8	Connection Notes	9	
9	Connection Example	9	
10	Connecting Shielded Cables Using the Shield Connector	10	
11	Programming Data 11.1 Local Bus (INTERBUS) 11.2 Other Bus Systems		
12	Process Data	12	
	 12.1 Assignment of the Terminal Points to the OUT Process Data Words 12.2 Assignment of the IN Process Data Words 12.3 OUT Process Data		
13	Formats for Representing the Output Values	16	
	13.1 "IB IL" Format 13.2 "IB ST" Format		
14	Output Behavior 14.1 Output Behavior During Error-Free Operation (Normal Operation)		
	14.2 Output Behavior in the Event of an Error		
	 14.3 Output Behavior of the Voltage Output 14.4 Response of the Control System or Computer to a Hardware Signal for Different Control or Computer Systems 		
	14.5 Response of the Voltage Output to a Control Command of the INTERBUS Control	oller Board20	
15	Input Behavior	21	
16	Parameterization	22	

2 Ordering Data

Products

Description		Туре	Order No.	Pcs./Pkt.
Inline terminal with two analog voltage outputs, complete with accessories (connector and labeling field)		IB IL AO 2/U/BP-PAC	2861467	1
Inline terminal with two analog voltage outputs, without accessories		IB IL AO 2/U/BP	2732732	1
The connector listed below is needed for the complete fitting of the IB IL AO 2/U/BP terminal.				

Accessories

Description	Туре	Order No.	Pcs./Pkt.
Connector with six spring-cage connections and shield connection (green, w/o color print)	IB IL SCN-6 SHIELD-TWIN	2740245	5
Documentation			

Description	Туре	Order No.	Pcs./Pkt.
"Automation Terminals of the Inline Product Range" user manual	IL SYS INST UM E	2698737	1
"Configuring and Installing the INTERBUS Inline Product Range" user manual	IB IL SYS PRO UM E	2743048	1

3 Technical Data

General Data

Housing dimensions (width x height x depth)	12.2 mm x 120 mm x 71.5 mm
Weight	48 g (without connector), 70 g (with connector)
Operating mode	Process data mode with 2 words
Connection method for actuators	2-wire technology
Ambient temperature (operation)	-25°C to +55°C
Ambient temperature (storage/transport)	-25°C to +85°C
Permissible humidity (operation/storage/transport)	10% to 95% according to DIN EN 61131-2
Permissible air pressure (operation/storage/transport)	70 kPa to 106 kPa (up to 3000 m above sea level)
Degree of protection	IP20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536
Connection data for Inline connector	
Connection method	Spring-cage terminals
Conductor cross-section	0.2 mm ² to 1.5 mm ² (solid or stranded), 24 - 16 AWG
Interface	
Local bus	Data routing
Transmission Speed	

IB IL AO 2/U/BP, IB IL AO 2/U/BP-PAC

500 kbps

Power Consumption	
Communications power UL	7.5 V
Current consumption at UL	33 mA, typical; 40 mA, maximum (approximately)
I/O supply voltage U _{ANA}	24 V DC
Current consumption at U _{ANA}	
No-load operation ($R_L > 10 M\Omega$)	18 mA, typical; 28 mA, maximum
Full load operation (R _L = 2 k Ω)	25 mA, typical; 35 mA, maximum
Total power consumption	
No-load operation ($R_L > 10 M\Omega$)	0.68 W, typical
Full load operation ($R_L = 2 k\Omega$)	0.85 W, typical

Supply of the Module Electronics and I/O Through the Bus Coupler/Power Terminal

Connection method

Potential routing

Derating: Permissible Ambient Temperature Depending on the Current of the Potential Jumpers $U_{\rm M}$ and $U_{\rm S}$ (Total Current)

	~	5
T _A		Ambient temperature in °C
I		Current flowing through the potential jumpers U_M and U_S in A

Analog Outputs			
Number		2	
Signal connection method		2-wire technology, single-ended	
Signals/resolution in the process data we	ord (quantization)		
Voltage -10 V to +10	V	333.33 µV/LSB	
Voltage 0 V to +10 V		333.33 µV/LSB	
Representation of output value			
-10 V to +10	V	16-bit two's complement	
0 V to +10 V		16-bit two's complement	
For the representation of Values" on page 16.	f the output value in the different for	mats, please refer to the notes in "Formats for Representing the Output	
Smallest DAC quantization step			
-10 V to +10 V		2.667 mV (13 bits)	
0 V to +10 V		2.667 mV (12 bits)	
Basic error limit		±0.02%, typical, of the output range final value	
Output load		$2 k\Omega$, minimum	
Process data update time including conv converter	version time of the digital/analog	1 INTERBUS cycle (depending on the bus configuration); <1 ms	
Signal rise time (slew rate)			
10% to 90% of the final value		15 μs, typical	
0% to > 99% of the final value		31 μs, typical	
Signal rise time (slew rate) (-9.0 V to + 9	9.0 V)		
No-load operation		0.35 V/µs, typical	
With ohmic load ($R_L = 2 k\Omega$)		0.24 V/µs, typical	
With ohmic/capacitive load $R_L = 2 k\Omega$. / C _L = 10 nF	0.24 V/µs, typical	
With ohmic/capacitive load RL = 2 k Ω / CL = 220 nF		0.09 V/µs, typical	
Transient protection of analog outputs		Yes	
Maximum cable length for the LiYCY (TF (shielded twisted power station cable)	P) cable type,	500 m	
Electrical features of LiYCY (TP) Inductance Effective capacitance		N x 2 x 0.5 (N= number of wire pairs, wire cross-section ≥ 0.5 mm ² 0.67 mH/km, typical 120 nF/km, typical	

Tolerance Behavior and Temperature Response (Absolute Tolerance Values) (The tolerance values refer to the output range final value of 10 V.)

(
	Typical	Maximum
Tolerance at 23°C		
Total offset voltage	±0.5 mV	±4.0 mV
Gain error	±2.5 mV	±6.0 mV
Differential non-linearity	±1.3 mV	±3.9 mV
Total tolerance at 23°C	±4.3 mV	±13.9 mV
Temperature response at -25°C to +55°C		
Offset voltage drift T _{KVO}	±2.1 mV	±5.0 mV
Gain drift T _{KG}	±9.2 mV	±20.0 mV
Total voltage drift T _{Ktot} = T _{KVO} + T _{KG}	±11.3 mV	±25.0 mV
Total tolerance of the voltage output (-25°C to +55°C) offset error + gain error + linearity error + drift error	±15.6 mV	±38.9 mV

(The tolerance Benavior and Temperature Response (Relative Tolerance Values)				
	Typical	Maximum		
	±0.005%	±0.027%		
	±0.025%	±0.060%		
	±0.013%	±0.027%		
	±0.09%	±0.14%		
	4 ppm/K	10 ppm/K		
	18 ppm/K	40 ppm/K		
	23 ppm/K	50 ppm/K		
Total tolerance of the voltage output (-25°C to +55°C) offset error + gain error + linearity error + drift error				
Additional Tolerances Influenced by Electromagnetic Fields				
Type of Electromagnetic Interference Typical Deviation From the Output Range Final Value (Voltage Output)				
Relative	Abs	olute		
< ±0.2%	< ±2	20 mV		
Jucted interference < ±2.8%		80 mV		
	to +55°C) rift error omagnetic Fields Typical Deviation From th (Voltag Relative < ±0.2% < ±2.8%	Iterative roleative values) nge final value of 10 V.) ±0.005% ±0.025% ±0.013% ±0.013% ±0.09% ±0.09% 4 ppm/K 18 ppm/K 23 ppm/K to +55°C) ±0.16% rift error omagnetic Fields Typical Deviation From the Output Range F (Voltage Output) Relative Abs < ±0.2%		

Safety Equipment

Transient protection of analog outputs

Yes

Electrical Isolation/Isolation of the Voltage Areas

The values are valid for shielded and unshielded twisted actuator cables.

Common Potentials

R

24 V I/O voltage, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

Separate Potentials in the System Consisting of Bus Coupler/Power Terminal and I/O Terminal		
- Test Distance	- Test Voltage	
7.5 V supply (bus logic), 24 V supply U _{ANA} / I/O	500 V AC, 50 Hz, 1 min	
7.5 V supply (bus logic), 24 V supply U_{ANA} / functional earth ground	500 V AC, 50 Hz, 1 min	
24 V supply (I/O) / functional earth ground	500 V AC, 50 Hz, 1 min	
Error Messages to the Higher-Level Control or Computer System		

Failure of or insufficient communications power UL

Yes, I/O error message sent to the bus coupler

Approvals

Information on current approvals can be found on the Internet at www.download.phoenixcontact.com.

4 Local Diagnostic and Status Indicators and Terminal Point Assignment

Figure 1 Terminal with appropriate connector

4.1 Local Diagnostic and Status Indicators

Desig.	Color	Meaning	
D	Green	Diagnostics	
0-S	Orange	Original default state parameterized	

4.2 Function Identification

Yellow

4.3 Terminal Point Assignment

Terminal Point	Signal	Assignment
1.1	U1	Voltage output 1
2.1	U2	Voltage output 2
1.2, 2.2	-	Not used
1.3, 2.3	AGND	Voltage output ground
1.4, 2.4	Shield	Shield connection

4.4 Parameterized Default Upon Delivery

By default upon delivery, the parameters are set as follows:

Data format:	IB IL
Behavior of the outputs in	Outputs hold the last value
the event of an error:	(Hold)
Output range:	-10 V to +10 V

The following terminal parameters can be configured according to your conditions using the process data:

Data format:	IB ST
Behavior of the outputs in	Outputs are reset to 0 V
the event of an error:	(Reset)
Output range:	0 V to +10 V

For parameterization you must switch to parameterization mode. The procedure is described in "Parameterization" on page 22.

5 Installation Instructions

High current flowing through potential jumpers U_M and U_S leads to a temperature rise in the potential jumpers and inside the terminal. Observe the following instruction to keep the current flowing through the potential jumpers of the analog terminals as low as possible:

Create a separate main circuit for each analog terminal.

If this is not possible in your application and if you are using analog terminals in a main circuit together with other terminals, place the analog terminals behind all the other terminals at the end of the main circuit.

Please note the derating curve shown on page 4.

6 Internal Circuit Diagram

Figure 2 Internal wiring of the terminal points

Key:

OPC	Protocol chip
₽≠	Optocoupler
μΡ	Microprocessor
SEC	Safety circuit
EEPROM	Electrically erasable programmable read-only memory
XXX	DC/DC converter with electrical isolation
REF	Reference voltage
\triangleright	Amplifier
#	Digital/analog converter
$\cap \blacklozenge$	Analog output
	Analog ground, electrically isolated from ground of the potential jumper
	Other symbols used are explained in the

IL SYS INST UM E user manual or in the system manual for your bus system.

7 Electrical Isolation

8 Connection Notes

9 Connection Example

[-2

Use a connector with shield connection when installing the actuators. Figure 4 shows the connection schematically (without shield connector).

Figure 4 Connection of two voltage actuators with shield connection using 2-wire technology

10 Connecting Shielded Cables Using the Shield Connector

Figure 5 Connecting the shield using the shield connector

The diameter of the actuator cable is usually too large to allow the cable to be installed into the strain relief of the shield connector with sheathed and folded shield. The connection procedure for this cable therefore differs from the connection procedure described in the IB IL SYS PRO UM E user manual. The comparative differences with the user manual are marked in bold text.

Connection of the cables according to Figure 5 should be carried out as follows:

Stripping Cables

• Strip the outer cable sheaths to the desired length (a). (A)

The desired length (a) depends on the connection position of the wires and whether the wires should have a large or small amount of space between the connection point and the shield connection.

- Shorten the braided shield to **20 mm**. (A)
- **Do not** fold the braided shield back over the outer sheath. (B)
- Remove the protective foil.
- Strip 8 mm off the wires. (B)

Inline wi Howeve using fe

Inline wiring is normally without ferrules. However, it is possible to use ferrules. If using ferrules, make sure they are properly crimped.

Wiring Connectors (According to the User Manual)

- Push a screwdriver into the slot of the appropriate terminal point, so that you can insert the wire into the spring opening.
 Phoenix Contact recommends using an SZF 1-0,6X3,5 screwdriver (Order No. 1204517).
- Insert the wire. Remove the screwdriver from the opening. The wire is now clamped.

For the connector pin assignment, please refer to the table on page 7.

Connecting the Shield

- Open the shield connector (see user manual). (C)
- Place the shield connection clamp in the shield connector corresponding to the cable width (see user manual).

- Place the cables in the shield connection. (D) Push the outer cable sheaths up to the shield connection clamp. The wires with the braided shield must be underneath the shield connection clamp. The braided shield must project approximately 15 mm over the shield connection clamp.
- Close the shield connector. (E)
- Fasten the screws for the shield connector using a screwdriver. (F)

11 Programming Data

11.1 Local Bus (INTERBUS)

ID code	5B _{hex} (91 _{dec})
Length code	02 _{hex}
Process data channel	32 bits
Input address area	4 bytes
Output address area	4 bytes
Parameter channel (PCP)	0 bytes
Register length (bus)	4 bytes

11.2 Other Bus Systems

For the programming data of other bus systems, please refer to the appropriate electronic device data sheet (GSD, EDS).

12 Process Data

12.1 Assignment of the Terminal Points to the OUT Process Data Words

(Word.bit) view	Byte								Wo	rd 0							
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(Byte.bit) view	Byte		Byte 0 Byte 1														
	Bit	7	7 6 5 4 3 2 1 0 7 6 5 4 3 2								1	0					
Assignment	IB IL format	SB	SB Channel 1 output value														
Assignment	IB ST format	SB				C	hanr	el 1 d	outpu	it valu	ie				0	0	0
Terminal points	Signal	Tern	ninal	point	1.1: י	voltag	je ou	tput 1									
	Signal reference	Tern	Ferminal point 1.3														
	Shielding (FE)	Tern	erminal point 1.4														

(Word.bit) view	Byte								Wo	rd 1							
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(Byte.bit) view	Byte		Byte 2 Byte 3														
	Bit	7	6	6 5 4 3 2 1 0 7 6 5 4 3 2								2	1	0			
Assignment	IB IL format	SB						Cha	annel	2 out	put v	alue					
Assignment	IB ST format	SB				C	hann	el 2 d	outpu	t valu	ie				0	0	0
Terminal points	Signal	Tern	ninal	point	2.1: \	voltag	ge out	tput 2	2								
	Signal reference	Tern	erminal point 2.3														
	Shielding (FE)	Tern	ninal	point	2.4												

SB Sign bit

0 In "IB ST" format bits 2 through 0 are irrelevant. Set these bits to "0".

12.2 Assignment of the IN Process Data Words

(Word.bit) view	Byte								Wo	rd 0							
	Bit	15	15 14 13 12 11 10 9 8 7								6	5	4	3	2	1	0
(Byte.bit) view	Byte	Byte 0							Byte 1								
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Assignment		SB			ſ	Mirro	red cł	nanne	el 1 o	utput	value	9			F	R	Н

(Word.bit) view	Byte								Wo	rd 1								
	Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3										2	1	0			
(Byte.bit) view	Byte		Byte 2								Byte 3							
	Bit	7	7 6 5 4 3 2 1 0 7 6								5	4	3	2	1	0		
Assignment		SB	B Mirrored channel 2 output value								F	R	Н					

SB Sign bit

F Output data format

R Voltage range

H Hold/reset

12.3 OUT Process Data

The OUT process data words specify the output values in each cycle.

Figure 6 OUT Process data words in IB IL and IB ST formats

- SB Sign bit
- OV Output value
- X Irrelevant bit
- MSB Most significant bit
- LSB Least significant bit

Set the irrelevant bits to 0.

12.4 IN Process Data

Bits 15 through 3 of the OUT process data words are mirrored in the IN process data words. Bit 15 is the sign bit. Bits 2 through 0 are available as status bits. They contain information about the parameterized behavior of the terminal.

Figure 7 IN process data words

SB	Sign bit
OV*	Mirrored output value
F	Output data format
R	Voltage range
Н	Hold/reset
MSB	Most significant bit
LSB	Least significant bit

Bits 2 through 0 have the following meaning:

Bit	Designation	Meaning	Bit x = 0	Bit x = 1
2	F	Output data format	IL	ST
1	R	Voltage range	-10 V to +10 V	0 V to +10 V
0	Н	Hold/reset	Hold	0

13 Formats for Representing the Output Values

R

The IB IL AO 2/U/BP terminal has format compatibility with the IB IL AI 2/SF input terminal. This means that it is possible to use these terminals in multiplexer systems (e.g., IB IL MUX).

"IB IL" is the default format on the terminal. To ensure that the terminal can be operated in previously used ST data formats, the output value representation can be switched to "IB ST" format.

13.1 "IB IL" Format

The output value is represented in bits 14 through 0. An additional bit (bit 15) is available as a sign bit.

Output value representation in "IB IL" format (15 bits + sign bit)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB								OV							

SB Sign bit OV Output value

Ov Output value

Significant Output Values in "IB IL" Format

The terminal has two analog output channels that can supply voltages from -10 V to +10 V with a 13-bit resolution.

Output range -10 V to +10 V

Output Data Word (Two's Complement)		-10 V to +10 V U _{Output}	Remark
hex	dec	V	
<7FFF	32767	+10.837	
>7F00	32512	+10.837	
7F00	32512	+10.837	
7530	30000	+10.0	
0008	8	+2.667 mV	Smallest DAC quantization step
0001	1	+333.33 μV	Process data resolution
0000	0	0	
FFF8	-8	-2.667 mV	
8AD0	-30000	-10.0	
8100	-32512	-10.837	
<8100	Processed sep	parately:	
8001	-32767	+10.837	(Overrange)
8080	-32640	-10.837	(Underrange)
80xx	(Other)	Hold last value	

For the 0 V to 10 V output range only the upper range is used (see Figure 6). The resolution for this range is thus limited to 12 bits.

Bits 2 through 0 are not always considered as "irrelevant bits". For use as a field multiplexer, error messages as well as overrange or underrange information must be evaluated appropriately. Overrange (8001_{hex}) outputs 10.837 V, underrange (8080_{hex}) 0 V. With an error code (1000 0000 0xxx xxx0_{bin}) the last valid value from the digital/analog converter is output.

Output range 0 V to 10 V

Output Data Word (Two's Complement)		0 V to 10 V U _{Output}	Remark
hex	dec	V	
≤7FFF	32512	+10.837	
> 7500	32512	+10.837	
7F00	32512	+10.837	
7530	30000	+10.0	
0008	8	+2.667 mV	Smallest DAC quantization step
0001	1	+333.33 μV	Process data resolution
< 0000	0	0	
< 8100	Processed sep	parately:	
8001	-32767	+10.837	(Overrange)
8080	-32640	0	(Underrange)
80xx	(Other)	Hold last value	

The $80 x x_{hex}$ range is reserved exclusively for error and message codes.

13.2 "IB ST" Format

The output value is represented in bits 14 through 3. Bit 15 is available as sign bit. Bits 2 through 0 are irrelevant.

This format corresponds to the data format used on INTERBUS ST modules.

Output value representation in "IB ST" format (12 bits + sign bit)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB						0	V						Х	Х	Х

SB Sign bit

OV Output value

X Irrelevant bit (Set this bit to 0.)

Bits 2 through 0 are not always considered as "irrelevant bits". Values $7FF9_{hex}$ and 8001_{hex} are recognized as overrange or underrange and interpreted as $7FF8_{hex}$ or 8008_{hex} and further processed as normal process data. In this way MUX-compatibility is ensured. The only exceptions are error codes (with ST only an open circuit). With this error code (xxxx xxxx xx1x_{bin}) the last value is maintained.

Significant Output Values in "IB ST" Format

Output range 0 V to 10 V

Output Data Word	0 V to 10 V		
(Two's Complement)	U _{Output}		
hex	V		
>7FF8	9.9975		
7FF8	9.9975		
4000	5.0		
0008	0.002441		
< 0000	0		

Output range -10 V to +10 V

Output Data Word	-10 V to +10 V
(Two's Complement)	Output
hex	V
>7FF8	9.9975
7FF8	9.9975
0008	0.002441
0000	0
FFF8	-0.002441
8008	-9.9975
< 8008	-9.9975

14 Output Behavior

[-\$

14.1 Output Behavior During Error-Free Operation (Normal Operation)

On power up during normal operation, the output range and the data format are read using the terminal EEPROM (non-volatile).

Volatile parameterization is also possible for these settings as well as for the behavior of the terminal in the event of an error. This parameterization can be carried out during runtime by a process data sequence.

14.2 Output Behavior in the Event of an Error

In the event of an error the outputs behave as set in the EEPROM (non-volatile) or as subsequently parameterized (volatile). This means that the outputs hold the last value (HOLD, default setting) or are reset to 0 (RESET, can be parameterized).

14.3 Output Behavior of the Voltage Output

Take output behavior (in the event of an error) into account when configuring your system!

Switching Operation/State of the Supply Voltage	Marginal Condition	OUT Process Data Word (Hexadecimal)	Behavior/Status of the Analog Output
U _{ANA} from 0 V to 24 V	$U_L = 0 V$	XXXX	0 V
U _{ANA} from 24 V to 0 V	U _L = 7.5 V	XXXX	0 V
Bus in stop state	U _{ANA} = 0 V	хххх	0 V
Bus in stop state	U _{ANA} = 24 V	XXXX	Hold last value
Bus reset (e.g., remote bus cable break)		хххх	Hold last value (default setting) or 0 V (can be parameterized)

U_{ANA} Analog supply voltage of the terminal

U_L Supply voltage for module electronics (communications power)

xxxx Any value in the range 0000_{hex} to FFFF_{hex}

eyeteme						
Signal	Control or Computer System	State After Switching Operation				
		OUT Process Data Word	Analog Output			
		(Hexadecimal)	U _{out}			
NORM*	AEG Schneider Automation	0000	0 V			
BASP	Siemens S5	0000	0 V			
CLAB	Bosch	0000	0 V			
SYSFAIL	VME	0000	0 V			
SYSFAIL	PC	0000	0 V			
CLEAR OUT	Moeller IPC	0000	0 V			

14.4 Response of the Control System or Computer to a Hardware Signal for Different Control or Computer Systems

* On controller boards for AEG Schneider Automation control systems it is possible to set the NORM signal so that the OUT process data word and the analog output hold the last value.

14.5 Response of the Voltage Output to a Control Command of the INTERBUS Controller Board

Command	State After Switching Operation					
	OUT Process Data Word	Analog Output				
	(Hexadecimal)	U _{out}				
STOP	хххх	Hold last value				
ALARM STOP (reset)	хххх	Hold last value (default setting) or 0 V (can be parameterized)				

15 Input Behavior

When analyzing the input behavior, a distinction is made between normal operation and parameterization mode. Input behavior in parameterization mode is described in Section "Parameterization" on page 22.

During **error-free normal operation**, the output data is mirrored in the input words as "acknowledgment" in bits 15 through 3 as soon as it is transmitted to the DAC.

Bits 2 through 0 are available as status bits and are used to display and read the set behavior of the terminal.

As the IB IL AO 2/U/BP terminal only evaluates bits 15 through 3 as data bits in both the IB IL and IB ST format, only these 13 bits are mirrored in the input data word (see notes on error codes, overrange and underrange).

Input data in "IB IL" and "IB ST" formats

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB						0	V*						F	R	Н

SB	Sign bit		
OV*	Mirrored output value		
F	Data format	0: IB IL	1: IB ST
R	Output range	0: -10 V to +10 V	1: 0 V to 10 V
Н	Hold/reset	0: Hold	1: Reset

If an **error** is detected by the terminal, it is indicated by an error code in the first IN process data word. Possible error codes can be found in the following table.

Error Codes:

Input Data Word (Two's Complement)	Cause	Remedy					
hex	1						
8010	This code can only appear in para causes:	This code can only appear in parameterization mode and can have two causes:					
	1 Configuration is carried out	Continue configuration					
	In step 2 of parameterization, this 8055 _{hex} in the first input word. It does not indicate an error at t	code appears after sending the code					
	2 Invalid configuration	Check parameterization					
8020	DAC voltage falls below the permissible value	Check the bus coupler voltage supply; Check that the potential jumpers are					
	I/O error occurs	connecting safely; Replace the terminal					
8040	Terminal faulty	Replace the terminal					

The error codes overwrite the status bits (bits 2 through 0) with "0". This means that in IB ST data format, it is also possible to clearly distinguish the data from valid process data.

16 Parameterization

By default upon delivery, th follows:	e terminal parameters are set as	You can configure the following terminal parameters according to your conditions, using the process data			
Data format:	IB IL	Data format:	IB ST		
Behavior of the outputs in	Outputs hold the last	Behavior of the outputs in	Outputs are reset to 0		
the event of an error:	value (Hold)	the event of an error:	(Reset)		
Output range:	-10 V to +10 V	Output range:	0 V to +10 V		

In order to parameterize the terminal you must change to parameterization mode. In the first process data output word, transmit codes 8033_{hex} and 8055_{hex} one after the other.

In order not to change accidentally to parameterization mode, you should set bits 2 through 0 to 0 in normal operation when transmitting process data.

The parameterization is valid for both channels.

Parameterizing the Terminal:

Step 1:	Transmission of code 8033 _{hex} in the first OUT process data word. In bits 15 through 3 of the first IN process data word this code is acknowledged as a normal process data item.
	For every subsequent code which is not equal to 8055 _{hex} in the first process data word, normal operation continues and the code is interpreted as a process data item.
Step 2:	Transmission of code 8055 _{hex} in the first OUT process data word.
	Acknowledgment takes place via code 8010 hex in the first input word.
	In this case, this code does not indicate an error, but shows that a configuration word is eventually expected (in step 3).
	For every subsequent code that is not equal to 80xx _{hex} in the first process data word, parameterization mode is quit.

Step 3:	Transmission of parameterization code 1000 0000 1000 $p_3p_2p_11_{bin}$.
	Where p _x are the terminal parameters: p ₃ : Data format (0: IB IL; 1: IB ST) p ₂ : Output range (0: -10 V to 0 V; 1: 0 V to 10 V) p ₁ : Reset behavior (0: Hold; 1: Reset)
	Acceptance of the value is confirmed in bits 15 through 0 of the first input word by mirroring the code. If an invalid configuration is displayed, code 8010 _{hex} appears in the first input data word, which indicates the error "Invalid Configuration".
	This step can be repeated as often as you like.
	If a code that is not equal to 80xx _{hex} is transmitted in the first process data word, parameterization mode is quit without the parameterization taking effect.
Step 4:	In this step you specify whether the parameterization stored in the EEPROM is volatile (dynamic) or non-volatile (static).
	Volatile parameterization: After a power up this setting is no longer available. Subsequent operation uses the settings stored in the EEPROM. Transmission of code 8077 _{hex} .
	Non-volatile parameterization: The parameterization is stored in the EEPROM. After a power up this parameterization from the EEPROM is used. Transmission of code 8099 _{hex} .
	After writing 8077 _{hex} or 8099 _{hex} the parameterization takes effect and parameterization mode is quit. This is displayed in the first input word through mirroring of code 8077 _{hex} or 8099 _{hex} . These values have a dedicated acknowledgment function. Only the next process data item is processed as normal.

If parameterization was aborted, it is possible to switch to parameterization mode by restarting with step 1. The orange "O-S" LED on the terminal indicates whether the original configuration is present or if the active configuration differs from the default configuration of the terminal upon delivery. The LED is on if the default state has been parameterized.

© PHOENIX CONTACT 04/2007